An increasing interest has been devoted in the last two decades in the study and development of multiphase pumps. Multiphase pumps elaborate mixtures of immiscible fluids (both compressible and not) at high speed and power density per stage in order to reduce size and cost. These peculiarities make this kind of turbomachinery very attractive in different industrial sectors such as Oil&Gas, both for sub-sea and topside applications, chemical and pharmaceutical industry. Of primary importance, in the machine design phase, is the evaluation of the turbomachinery rotordynamic stability, to ensure high reliability and service continuity specially when maintenance works are difficult and expensive. In this respect, the evaluation of the seal rotordynamic coefficients is usually achieved through simplified bulk flow models, based on the Navier-Stokes equations averaged over the fluid meatus (i.e. the rotor-stator clearance); the problem closure is achieved with the aid of both numerical and experimental correlations. Bulk flow models are characterized by some important peculiarities such as ease of use and fastness. They show however some weakness. In the specific case of multiphase pumps, for example, the application of the single phase correlations to the multiphase field can lead to inaccuracy and misleading results. In this regard, the aim of this doctoral research is to propose a new bulk flow model for the characterization of the structural response of an annular pressure seal operating in the multiphase flow regime. The proposed model is based on the major hypothesis of a smooth stratification of the two fluids. It is hypothesized that the liquid is centrifuged toward the stator, leaving the rotor in contact only with the gas. This assumption allows to derive a two-layer bulk model for each of the two phases. Chapter 1 introduces the usual notation of the structural stability analysis. The model of the seal structural response is outlined. Chapter 2 reviews the literature in the field of the single phase annular pressure seal modeling and characterization. Both CFD and bulk flow models are scrutinized. Finally, both the methods are compared with experimental measurements. Chapter 3 deals about the multi-phase annular seal modeling. The chapter especially analyzes the widest adopted two-phase bulk model in literature: the homogeneous two-phase model. A global review about the specific literature is introduced. A new general formulation of the boundary conditions is proposed. Model assessment in done through the comparison with experimental results. Chapter 4 presents the new stratified bulk flow model. Bulk flow equations are introduced. Correlations of both momentum flux integrals and friction factors are modeled for each of the two phases depending on the specific flow regime (turbulent rather than laminar). Predicted mass flow rates show good agreement with experimental results.
Sempre maggior interesse è stato dedicato nelle ultime due decadi nello studio e sviluppo di pompe multifase. Le pompe multifase elaborano miscele di fluidi immiscibili (compressibili e non) ad alte velocità e potenze specifiche per stadio in modo da ridurre dimensioni e costi. Tali peculiarità rendono questo tipo di turbomacchine molto attraenti in settori industriali come l’Oil&Gas, sia per applicazioni sottomarine che in superficie, industria chimica e farmaceutica. Di primaria importanza, in fase di progettazione della macchina, è la valutazione della stabilità rotordinamica della turbomacchina, in modo da assicurare alta affidabilità e continuità di servizio specialmente quando i lavori di manutenzione sono difficili e costosi. A tal riguardo, la valutazione dei coefficienti rotordinamici della tenuta è di solito realizzata attraverso l’uso di modelli semplificati di flusso medio, basate sulle equazioni di Navier-Stokes mediate sul meato fluido (i.e. la distanza rotore-statore); la chiusura del problema si ottiene attraverso l’utilizzo di correlazioni sia numeriche che sperimentali. I modelli di flusso medio sono caratterizzati da alcune importanti peculiarità come facilità di utilizzo e velocità. Mostrano tuttavia qualche punto debole. Nel caso specifico delle pompe multifase, ad esempio, l’applicazione delle correlazioni monofase al campo multifase, può portare a inaccuratezza e risultati fuorvianti. A tal riguardo, lo scopo di questa ricerca di dottorato è quello di proporre un nuovo modello di flusso medio per la caratterizzazione della risposta strutturale di una tenuta anulare in pressione operante in regime di flusso multifase. Il modello proposto è basato sull’ipotesi principale di una stratificazione regolare dei due fluidi. È stato ipotizzato che il liquido venga centrifugato verso lo statore, lasciando il rotore in contatto con il solo gas. Tale premessa rende possibile derivare un modello di flusso medio a due strati per ognuna delle due fasi. Chapter 1 introduce la notazione abituale per l’analisi di stabilità strutturale. Viene delineato il modello di risposta strutturale della tenuta. Chapter 2 riesamina la letteratura nel campo della caratterizzazione e modellazione delle tenute anulari in pressione in regime monofase. Vengono scrutinati sia i metodi CFD che i modelli a flusso medio. Infine, entrambi i metodi vengono comparati con i risultati sperimentali. Chapter 3 tratta della modellazione delle tenute anulari multifase. Il capitolo in particolare analizza il modello bifase più adottato in letteratura: il modello bifase omogeneo. Viene introdotto una revisione globale della letteratura. Una nuova formulazione generale delle condizioni al contorno è proposta. La valutazione del modello è fatta attraverso il confronto con i risultati sperimentali. Chapter 4 presenta il nuovo modello stratificato. Vengono introdotte le equazioni di flusso medio. Le correlazioni sia degli integrali del flusso di quantità di moto che dei fattori di attrito sono modellate per ognuna delle due fasi in funzione dello specifico regime di flusso (turbolento piuttosto che laminare). Le portate predette mostrano buon accordo con i risultati sperimentali.
Prediction models for the dynamical behaviour of multi-phase annular seals
Grimaldi, Gioacchino
2018
Abstract
An increasing interest has been devoted in the last two decades in the study and development of multiphase pumps. Multiphase pumps elaborate mixtures of immiscible fluids (both compressible and not) at high speed and power density per stage in order to reduce size and cost. These peculiarities make this kind of turbomachinery very attractive in different industrial sectors such as Oil&Gas, both for sub-sea and topside applications, chemical and pharmaceutical industry. Of primary importance, in the machine design phase, is the evaluation of the turbomachinery rotordynamic stability, to ensure high reliability and service continuity specially when maintenance works are difficult and expensive. In this respect, the evaluation of the seal rotordynamic coefficients is usually achieved through simplified bulk flow models, based on the Navier-Stokes equations averaged over the fluid meatus (i.e. the rotor-stator clearance); the problem closure is achieved with the aid of both numerical and experimental correlations. Bulk flow models are characterized by some important peculiarities such as ease of use and fastness. They show however some weakness. In the specific case of multiphase pumps, for example, the application of the single phase correlations to the multiphase field can lead to inaccuracy and misleading results. In this regard, the aim of this doctoral research is to propose a new bulk flow model for the characterization of the structural response of an annular pressure seal operating in the multiphase flow regime. The proposed model is based on the major hypothesis of a smooth stratification of the two fluids. It is hypothesized that the liquid is centrifuged toward the stator, leaving the rotor in contact only with the gas. This assumption allows to derive a two-layer bulk model for each of the two phases. Chapter 1 introduces the usual notation of the structural stability analysis. The model of the seal structural response is outlined. Chapter 2 reviews the literature in the field of the single phase annular pressure seal modeling and characterization. Both CFD and bulk flow models are scrutinized. Finally, both the methods are compared with experimental measurements. Chapter 3 deals about the multi-phase annular seal modeling. The chapter especially analyzes the widest adopted two-phase bulk model in literature: the homogeneous two-phase model. A global review about the specific literature is introduced. A new general formulation of the boundary conditions is proposed. Model assessment in done through the comparison with experimental results. Chapter 4 presents the new stratified bulk flow model. Bulk flow equations are introduced. Correlations of both momentum flux integrals and friction factors are modeled for each of the two phases depending on the specific flow regime (turbulent rather than laminar). Predicted mass flow rates show good agreement with experimental results.File | Dimensione | Formato | |
---|---|---|---|
30 ciclo-GRIMALDI Gioacchino.pdf
accesso aperto
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/64452
URN:NBN:IT:POLIBA-64452