Overtheyears, theindustrial landscapehasexperiencedsignificantevolutionsdrivenby advancementsintechnology,economicfluctuations,shiftsinsocietalandenvironmental dynamics,andevolvingconsumerpreferences.Thesechangeshaveresultedinfundamental alterations inthewaybusinessesoperate, impactingvariousaspectsof the industry, includingtheadoptionoftechnology, laborpractices,businessmodels,andsustainability initiatives. Theever-changingindustrial environment ismarkedbyseveral emergingfrontiers thatembraceontheonehandtheincorporationofdigitaltechnologies,cyber-physical systems,artificial intelligence,andtheinternetofthingsintomanufacturingprocesses withthepotential for futuredevelopments, suchas Industry5.0,whichemphasizes theadvancementofcollaborativeroboticsystems. Industry5.0, inparticular,placesa significantemphasisonhuman-robotcollaboration(HRC)byvaluinghumaninput. Ontheotherhand, theleading-edgefrontiersinvolveincorporatingsensorsanddata analyticsintointelligentinfrastructure,whichservestoelevatemaintenancestandards, minimizedowntime,andenhancesafety.Thisalsoentailsleveragingcooperativerobotmachinesystems, suchasdronesanddiagnostictrains, for infrastructure inspections. Thesemeasurescontributetocostreductionandefficiencyenhancementinthemonitoring andmaintenanceprocesses. Intheindustrialsector,arealmofnewprospectsisemerging, drivenbytheinnovativedevelopmentof last-miledeliverysolutions,encompassingdrone deliveries,autonomousdeliveryvehicles,andsmart lockers,alldesignedtostreamline urbanlogistics. Asaresult, thisthesis isdedicatedtosolvingtwoof themost importantresearch challenges indesigningdecisionandcontrol techniquesforcollaborativeandcooperative roboticsystemsandinparticularforHRCandaerial-groundmobileroboticsystems. In thefirst part, this thesis aims toaddress the gaps identified in the existing literatureregardingsafe,ergonomic,andefficientHRC,whichhavebeenbroughttolight throughacomprehensivereviewconductedinthisfield. Inparticular, thedeveloped contributionsregardtheconceptualizationanddevelopmentofnovelarchitecturesand controltechniquesforHRC, inpresenceorabsenceofoptimization.Thecentralaimisto concurrentlyoptimizethethreekeyobjectives, i.e.,safety,ergonomics,andefficiencyin tasksassociatedwithaddressingthetrajectoryplanningproblemformulatedassecondorder coneprogrammingproblemand solvedwith thedirect transcriptionmethod, whilerespectingthespeedandseparationmonitoring(SSM)ISOsafetyrequirementand guaranteeingtheergonomicoptimalpositionof theoperatorduringthecollaborative phase.ExpandingupontheessentialcriteriaforasafeandergonomicHRCtoencompass theemergingdomainofcollaborationbetweenhumananddrone,thesecondgoal involves creatingcontrolalgorithms, i.e., linearquadraticregulator (LQR)controllers, forsystems involvinghumansanddroneswithinindoorindustrialsettingslikewarehouses4.0. Thesecondpartofthisthesis isfocusedonthecooperationbetweenafleetofdrones oranindividualdroneandagroundmobileroboticsystem(i.e., train, truck)thatentails theseentitiesworkinginharmonytoachievespecificobjectivesortasks inacoordinated manner.Particularemphasisisplacedonthecriticalphaseofdronesreturningtoand landingonamovingtrainor truck. Thus, ad-hoccontrol techniques, i.e., consensus algorithm, LQR and receding horizon LQR controllers, are presented to tackle such complext asks in an efficient and effective way.

Control techniques for collaborative and cooperative robotic systems

Proia, Silvia
2024

Abstract

Overtheyears, theindustrial landscapehasexperiencedsignificantevolutionsdrivenby advancementsintechnology,economicfluctuations,shiftsinsocietalandenvironmental dynamics,andevolvingconsumerpreferences.Thesechangeshaveresultedinfundamental alterations inthewaybusinessesoperate, impactingvariousaspectsof the industry, includingtheadoptionoftechnology, laborpractices,businessmodels,andsustainability initiatives. Theever-changingindustrial environment ismarkedbyseveral emergingfrontiers thatembraceontheonehandtheincorporationofdigitaltechnologies,cyber-physical systems,artificial intelligence,andtheinternetofthingsintomanufacturingprocesses withthepotential for futuredevelopments, suchas Industry5.0,whichemphasizes theadvancementofcollaborativeroboticsystems. Industry5.0, inparticular,placesa significantemphasisonhuman-robotcollaboration(HRC)byvaluinghumaninput. Ontheotherhand, theleading-edgefrontiersinvolveincorporatingsensorsanddata analyticsintointelligentinfrastructure,whichservestoelevatemaintenancestandards, minimizedowntime,andenhancesafety.Thisalsoentailsleveragingcooperativerobotmachinesystems, suchasdronesanddiagnostictrains, for infrastructure inspections. Thesemeasurescontributetocostreductionandefficiencyenhancementinthemonitoring andmaintenanceprocesses. Intheindustrialsector,arealmofnewprospectsisemerging, drivenbytheinnovativedevelopmentof last-miledeliverysolutions,encompassingdrone deliveries,autonomousdeliveryvehicles,andsmart lockers,alldesignedtostreamline urbanlogistics. Asaresult, thisthesis isdedicatedtosolvingtwoof themost importantresearch challenges indesigningdecisionandcontrol techniquesforcollaborativeandcooperative roboticsystemsandinparticularforHRCandaerial-groundmobileroboticsystems. In thefirst part, this thesis aims toaddress the gaps identified in the existing literatureregardingsafe,ergonomic,andefficientHRC,whichhavebeenbroughttolight throughacomprehensivereviewconductedinthisfield. Inparticular, thedeveloped contributionsregardtheconceptualizationanddevelopmentofnovelarchitecturesand controltechniquesforHRC, inpresenceorabsenceofoptimization.Thecentralaimisto concurrentlyoptimizethethreekeyobjectives, i.e.,safety,ergonomics,andefficiencyin tasksassociatedwithaddressingthetrajectoryplanningproblemformulatedassecondorder coneprogrammingproblemand solvedwith thedirect transcriptionmethod, whilerespectingthespeedandseparationmonitoring(SSM)ISOsafetyrequirementand guaranteeingtheergonomicoptimalpositionof theoperatorduringthecollaborative phase.ExpandingupontheessentialcriteriaforasafeandergonomicHRCtoencompass theemergingdomainofcollaborationbetweenhumananddrone,thesecondgoal involves creatingcontrolalgorithms, i.e., linearquadraticregulator (LQR)controllers, forsystems involvinghumansanddroneswithinindoorindustrialsettingslikewarehouses4.0. Thesecondpartofthisthesis isfocusedonthecooperationbetweenafleetofdrones oranindividualdroneandagroundmobileroboticsystem(i.e., train, truck)thatentails theseentitiesworkinginharmonytoachievespecificobjectivesortasks inacoordinated manner.Particularemphasisisplacedonthecriticalphaseofdronesreturningtoand landingonamovingtrainor truck. Thus, ad-hoccontrol techniques, i.e., consensus algorithm, LQR and receding horizon LQR controllers, are presented to tackle such complext asks in an efficient and effective way.
2024
Inglese
Dotoli, Mariagrazia
Carli, Raffaele
Cavone, Graziana
Ciminelli, Caterina
Politecnico di Bari
File in questo prodotto:
File Dimensione Formato  
36 ciclo-PROIA Silvia.pdf

accesso aperto

Dimensione 6.58 MB
Formato Adobe PDF
6.58 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/64911
Il codice NBN di questa tesi è URN:NBN:IT:POLIBA-64911