Overtheyears, theindustrial landscapehasexperiencedsignificantevolutionsdrivenby advancementsintechnology,economicfluctuations,shiftsinsocietalandenvironmental dynamics,andevolvingconsumerpreferences.Thesechangeshaveresultedinfundamental alterations inthewaybusinessesoperate, impactingvariousaspectsof the industry, includingtheadoptionoftechnology, laborpractices,businessmodels,andsustainability initiatives. Theever-changingindustrial environment ismarkedbyseveral emergingfrontiers thatembraceontheonehandtheincorporationofdigitaltechnologies,cyber-physical systems,artificial intelligence,andtheinternetofthingsintomanufacturingprocesses withthepotential for futuredevelopments, suchas Industry5.0,whichemphasizes theadvancementofcollaborativeroboticsystems. Industry5.0, inparticular,placesa significantemphasisonhuman-robotcollaboration(HRC)byvaluinghumaninput. Ontheotherhand, theleading-edgefrontiersinvolveincorporatingsensorsanddata analyticsintointelligentinfrastructure,whichservestoelevatemaintenancestandards, minimizedowntime,andenhancesafety.Thisalsoentailsleveragingcooperativerobotmachinesystems, suchasdronesanddiagnostictrains, for infrastructure inspections. Thesemeasurescontributetocostreductionandefficiencyenhancementinthemonitoring andmaintenanceprocesses. Intheindustrialsector,arealmofnewprospectsisemerging, drivenbytheinnovativedevelopmentof last-miledeliverysolutions,encompassingdrone deliveries,autonomousdeliveryvehicles,andsmart lockers,alldesignedtostreamline urbanlogistics. Asaresult, thisthesis isdedicatedtosolvingtwoof themost importantresearch challenges indesigningdecisionandcontrol techniquesforcollaborativeandcooperative roboticsystemsandinparticularforHRCandaerial-groundmobileroboticsystems. In thefirst part, this thesis aims toaddress the gaps identified in the existing literatureregardingsafe,ergonomic,andefficientHRC,whichhavebeenbroughttolight throughacomprehensivereviewconductedinthisfield. Inparticular, thedeveloped contributionsregardtheconceptualizationanddevelopmentofnovelarchitecturesand controltechniquesforHRC, inpresenceorabsenceofoptimization.Thecentralaimisto concurrentlyoptimizethethreekeyobjectives, i.e.,safety,ergonomics,andefficiencyin tasksassociatedwithaddressingthetrajectoryplanningproblemformulatedassecondorder coneprogrammingproblemand solvedwith thedirect transcriptionmethod, whilerespectingthespeedandseparationmonitoring(SSM)ISOsafetyrequirementand guaranteeingtheergonomicoptimalpositionof theoperatorduringthecollaborative phase.ExpandingupontheessentialcriteriaforasafeandergonomicHRCtoencompass theemergingdomainofcollaborationbetweenhumananddrone,thesecondgoal involves creatingcontrolalgorithms, i.e., linearquadraticregulator (LQR)controllers, forsystems involvinghumansanddroneswithinindoorindustrialsettingslikewarehouses4.0. Thesecondpartofthisthesis isfocusedonthecooperationbetweenafleetofdrones oranindividualdroneandagroundmobileroboticsystem(i.e., train, truck)thatentails theseentitiesworkinginharmonytoachievespecificobjectivesortasks inacoordinated manner.Particularemphasisisplacedonthecriticalphaseofdronesreturningtoand landingonamovingtrainor truck. Thus, ad-hoccontrol techniques, i.e., consensus algorithm, LQR and receding horizon LQR controllers, are presented to tackle such complext asks in an efficient and effective way.
Control techniques for collaborative and cooperative robotic systems
Proia, Silvia
2024
Abstract
Overtheyears, theindustrial landscapehasexperiencedsignificantevolutionsdrivenby advancementsintechnology,economicfluctuations,shiftsinsocietalandenvironmental dynamics,andevolvingconsumerpreferences.Thesechangeshaveresultedinfundamental alterations inthewaybusinessesoperate, impactingvariousaspectsof the industry, includingtheadoptionoftechnology, laborpractices,businessmodels,andsustainability initiatives. Theever-changingindustrial environment ismarkedbyseveral emergingfrontiers thatembraceontheonehandtheincorporationofdigitaltechnologies,cyber-physical systems,artificial intelligence,andtheinternetofthingsintomanufacturingprocesses withthepotential for futuredevelopments, suchas Industry5.0,whichemphasizes theadvancementofcollaborativeroboticsystems. Industry5.0, inparticular,placesa significantemphasisonhuman-robotcollaboration(HRC)byvaluinghumaninput. Ontheotherhand, theleading-edgefrontiersinvolveincorporatingsensorsanddata analyticsintointelligentinfrastructure,whichservestoelevatemaintenancestandards, minimizedowntime,andenhancesafety.Thisalsoentailsleveragingcooperativerobotmachinesystems, suchasdronesanddiagnostictrains, for infrastructure inspections. Thesemeasurescontributetocostreductionandefficiencyenhancementinthemonitoring andmaintenanceprocesses. Intheindustrialsector,arealmofnewprospectsisemerging, drivenbytheinnovativedevelopmentof last-miledeliverysolutions,encompassingdrone deliveries,autonomousdeliveryvehicles,andsmart lockers,alldesignedtostreamline urbanlogistics. Asaresult, thisthesis isdedicatedtosolvingtwoof themost importantresearch challenges indesigningdecisionandcontrol techniquesforcollaborativeandcooperative roboticsystemsandinparticularforHRCandaerial-groundmobileroboticsystems. In thefirst part, this thesis aims toaddress the gaps identified in the existing literatureregardingsafe,ergonomic,andefficientHRC,whichhavebeenbroughttolight throughacomprehensivereviewconductedinthisfield. Inparticular, thedeveloped contributionsregardtheconceptualizationanddevelopmentofnovelarchitecturesand controltechniquesforHRC, inpresenceorabsenceofoptimization.Thecentralaimisto concurrentlyoptimizethethreekeyobjectives, i.e.,safety,ergonomics,andefficiencyin tasksassociatedwithaddressingthetrajectoryplanningproblemformulatedassecondorder coneprogrammingproblemand solvedwith thedirect transcriptionmethod, whilerespectingthespeedandseparationmonitoring(SSM)ISOsafetyrequirementand guaranteeingtheergonomicoptimalpositionof theoperatorduringthecollaborative phase.ExpandingupontheessentialcriteriaforasafeandergonomicHRCtoencompass theemergingdomainofcollaborationbetweenhumananddrone,thesecondgoal involves creatingcontrolalgorithms, i.e., linearquadraticregulator (LQR)controllers, forsystems involvinghumansanddroneswithinindoorindustrialsettingslikewarehouses4.0. Thesecondpartofthisthesis isfocusedonthecooperationbetweenafleetofdrones oranindividualdroneandagroundmobileroboticsystem(i.e., train, truck)thatentails theseentitiesworkinginharmonytoachievespecificobjectivesortasks inacoordinated manner.Particularemphasisisplacedonthecriticalphaseofdronesreturningtoand landingonamovingtrainor truck. Thus, ad-hoccontrol techniques, i.e., consensus algorithm, LQR and receding horizon LQR controllers, are presented to tackle such complext asks in an efficient and effective way.File | Dimensione | Formato | |
---|---|---|---|
36 ciclo-PROIA Silvia.pdf
accesso aperto
Dimensione
6.58 MB
Formato
Adobe PDF
|
6.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/64911
URN:NBN:IT:POLIBA-64911