The present thesis consists of three results related to the geometry of rotation invariant Kähler metrics. In the first one, we prove that a 3-codimensional Kähler-Einstein submanifold of the complex projective space with rotation invariant metric is forced to be the product of complex projective spaces. In the second one, we prove that the only stable-projectively induced Ricci-flat Kähler metrics are flat. Finally, we prove as third result that given a Ricciflat radial Kähler metric defined on a complex surface such that the third coefficient of its Tian-Yau-Zelditch expansion vanishes, then it is flat.
The geometry of rotation invariant Kähler metrics
SALIS, FILIPPO
2018
Abstract
The present thesis consists of three results related to the geometry of rotation invariant Kähler metrics. In the first one, we prove that a 3-codimensional Kähler-Einstein submanifold of the complex projective space with rotation invariant metric is forced to be the product of complex projective spaces. In the second one, we prove that the only stable-projectively induced Ricci-flat Kähler metrics are flat. Finally, we prove as third result that given a Ricciflat radial Kähler metric defined on a complex surface such that the third coefficient of its Tian-Yau-Zelditch expansion vanishes, then it is flat.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
tesi di dottorato_Filippo Salis.pdf
accesso aperto
Dimensione
794.6 kB
Formato
Adobe PDF
|
794.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/69936
Il codice NBN di questa tesi è
URN:NBN:IT:UNICA-69936