Recent years have seen significant interest in the automatic 3D reconstruction of indoor scenes, leading to a distinct and very-active sub-field within 3D reconstruction. The main objective is to convert rapidly measured data representing real-world indoor environments into models encompassing geometric, structural, and visual abstractions. This thesis focuses on the particular subject of extracting geometric information from single panoramic images, using either visual data alone or sparse registered depth information. The appeal of this setup lies in the efficiency and cost-effectiveness of data acquisition using 360º images. The challenge, however, is that creating a comprehensive model from mostly visual input is extremely difficult, due to noise, missing data, and clutter. My research has concentrated on leveraging prior information, in the form of architectural and data-driven priors derived from large annotated datasets, to develop end-to-end deep learning solutions for specific tasks in the structured reconstruction pipeline. My first contribution consists in a deep neural network architecture for estimating a depth map from a single monocular indoor panorama, operating directly on the equirectangular projection. Leveraging the characteristics of indoor 360-degree images and recognizing the impact of gravity on indoor scene design, the network efficiently encodes the scene into vertical spherical slices. By exploiting long- and short- term relationships among these slices, it recovers an equirectangular depth map directly from the corresponding RGB image. My second contribution generalizes the approach to handle multimodal input, also covering the situation in which the equirectangular input image is paired with a sparse depth map, as provided from common capture setups. Depth is inferred using an efficient single-branch network with a dynamic gating system, processing both dense visual data and sparse geometric data. Additionally, a new augmentation strategy enhances the model's robustness to various types of sparsity, including those from structured light sensors and LiDAR setups. While the first two contributions focus on per-pixel geometric information, my third contribution addresses the recovery of the 3D shape of permanent room surfaces from a single panoramic image. Unlike previous methods, this approach tackles the problem in 3D, expanding the reconstruction space. It employs a graph convolutional network to directly infer the room structure as a 3D mesh, deforming a graph- encoded tessellated sphere mapped to the spherical panorama. Gravity- aligned features are actively incorporated using a projection layer with multi-head self-attention, and specialized losses guide plausible solutions in the presence of clutter and occlusions. The benchmarks on publicly available data show that all three methods provided significant improvements over the state-of-the-art.

Data-driven depth and 3D architectural layout estimation of an interior environment from monocular panoramic input

ALMANSA ARANEGA, EVA MARIA
2024

Abstract

Recent years have seen significant interest in the automatic 3D reconstruction of indoor scenes, leading to a distinct and very-active sub-field within 3D reconstruction. The main objective is to convert rapidly measured data representing real-world indoor environments into models encompassing geometric, structural, and visual abstractions. This thesis focuses on the particular subject of extracting geometric information from single panoramic images, using either visual data alone or sparse registered depth information. The appeal of this setup lies in the efficiency and cost-effectiveness of data acquisition using 360º images. The challenge, however, is that creating a comprehensive model from mostly visual input is extremely difficult, due to noise, missing data, and clutter. My research has concentrated on leveraging prior information, in the form of architectural and data-driven priors derived from large annotated datasets, to develop end-to-end deep learning solutions for specific tasks in the structured reconstruction pipeline. My first contribution consists in a deep neural network architecture for estimating a depth map from a single monocular indoor panorama, operating directly on the equirectangular projection. Leveraging the characteristics of indoor 360-degree images and recognizing the impact of gravity on indoor scene design, the network efficiently encodes the scene into vertical spherical slices. By exploiting long- and short- term relationships among these slices, it recovers an equirectangular depth map directly from the corresponding RGB image. My second contribution generalizes the approach to handle multimodal input, also covering the situation in which the equirectangular input image is paired with a sparse depth map, as provided from common capture setups. Depth is inferred using an efficient single-branch network with a dynamic gating system, processing both dense visual data and sparse geometric data. Additionally, a new augmentation strategy enhances the model's robustness to various types of sparsity, including those from structured light sensors and LiDAR setups. While the first two contributions focus on per-pixel geometric information, my third contribution addresses the recovery of the 3D shape of permanent room surfaces from a single panoramic image. Unlike previous methods, this approach tackles the problem in 3D, expanding the reconstruction space. It employs a graph convolutional network to directly infer the room structure as a 3D mesh, deforming a graph- encoded tessellated sphere mapped to the spherical panorama. Gravity- aligned features are actively incorporated using a projection layer with multi-head self-attention, and specialized losses guide plausible solutions in the presence of clutter and occlusions. The benchmarks on publicly available data show that all three methods provided significant improvements over the state-of-the-art.
20-feb-2024
Inglese
SCATENI, RICCARDO
Università degli Studi di Cagliari
File in questo prodotto:
File Dimensione Formato  
tesi di dottorato_eva almansa.pdf

accesso aperto

Dimensione 4.03 MB
Formato Adobe PDF
4.03 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/71194
Il codice NBN di questa tesi è URN:NBN:IT:UNICA-71194