Scholarly knowledge graphs are a form of knowledge representation that aims to capture and organize the information and knowledge contained in scholarly publications, such as research papers, books, patents, and datasets. Scholarly knowledge graphs can provide a comprehensive and structured view of the scholarly domain, covering various aspects such as authors, affiliations, research topics, methods, results, citations, and impact. Scholarly knowledge graphs can enable various applications and services that can facilitate and enhance scholarly communication, such as information retrieval, data analysis, recommendation systems, semantic search, and knowledge discovery. However, constructing and maintaining scholarly knowledge graphs is a challenging task that requires dealing with large-scale, heterogeneous, and dynamic data sources. Moreover, extracting and integrating the relevant information and knowledge from unstructured or semi-structured text is not trivial, as it involves natural language processing, machine learning, ontology engineering, and semantic web technologies. Furthermore, ensuring the quality and validity of the scholarly knowledge graphs is essential for their usability and reliability.

Academia/Industry DynAmics (AIDA): A knowledge Graph within the scholarly domain and its applications

ANGIONI, SIMONE
2024

Abstract

Scholarly knowledge graphs are a form of knowledge representation that aims to capture and organize the information and knowledge contained in scholarly publications, such as research papers, books, patents, and datasets. Scholarly knowledge graphs can provide a comprehensive and structured view of the scholarly domain, covering various aspects such as authors, affiliations, research topics, methods, results, citations, and impact. Scholarly knowledge graphs can enable various applications and services that can facilitate and enhance scholarly communication, such as information retrieval, data analysis, recommendation systems, semantic search, and knowledge discovery. However, constructing and maintaining scholarly knowledge graphs is a challenging task that requires dealing with large-scale, heterogeneous, and dynamic data sources. Moreover, extracting and integrating the relevant information and knowledge from unstructured or semi-structured text is not trivial, as it involves natural language processing, machine learning, ontology engineering, and semantic web technologies. Furthermore, ensuring the quality and validity of the scholarly knowledge graphs is essential for their usability and reliability.
20-feb-2024
Inglese
REFORGIATO RECUPERO, DIEGO ANGELO GAETANO
TONELLI, ROBERTO
Università degli Studi di Cagliari
File in questo prodotto:
File Dimensione Formato  
Tesi.pdf

accesso aperto

Dimensione 4.51 MB
Formato Adobe PDF
4.51 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/71198
Il codice NBN di questa tesi è URN:NBN:IT:UNICA-71198