Internal waves are perturbations propagating along the pycnocline, a boundary layer between two different density water masses. Although they are well known by oceanographers, their impact on the sedimentary record still poorly documented. In carbonate settings, internal waves can influence the carbonate production at the depth of pycnocliene by pumping the nutrient-rich waters to the carbonate buildups and create an ideal setting where the metazoan communities can thrive. Recently, the role of internal waves, as a source of water turbulence, has been considered as a useful tool in the interpretation of mesophotic carbonate communities. During the Late Jurassic and Late Oligocene, extensive carbonate reefs have been developed along the Tethys. In this PhD project, two case studies from the Upper Jurassic stromatoporoid-rich facies and Late Oligocene (Chattian) coral-rich facies have been studied in order to study the role of internal waves in development of these carbonate communities. The Upper Jurassic stromatoporoid-rich facies of Monte Sacro Limestones (MSL) crop out along the platform margin of Apulia Carbonate Platform (ACP) in Gargano area. The stromatoporoid buildups in MSL are characterized by high percentage of high-energy debris-rich facies associated with low-energy facies. The origin of these high-energy facies are still matter of debates. The MSL is characterized by three lithofacies LF1- stromatoporoid-rich facies, LF2- stromatoporoid-coral facies, and LF3- stromatoporoid-microbial facies. LF1 is the main lithofacies developed in MSL and characterized by stromatoporoids growth in low-energy mesophotic condition (LF1-S1) associated with high-energy intraclastic-bioclastic rich facies (LF1-S2). The stromatoporoid-rich buildups (LF1) in ACP can be categorized as phototrophic-heterotrophic reefs generated in a pure carbonate environment. The light penetration was confined, resulted in the high development of light-independent micro-encrusters (Tubiphytes morronensis), in a mesophotic condition, where the environment was not ideal for light-dependent microencrusters (Lithocodium- Bacinella) to grow. The origin of high-energy facies developed associated with mesophotic stromatoporoid buildups in MSL can be linked to the effect of internal waves. Firstly, internal waves can provide nutrient-rich water needed by stromatoporoid buildups to grow. Latterly, the buildups can be affected by high-energy turbulence, producing a large amount of high-energy debris rich facies (LF1-S2) in MSL. Moving on to a different age, the Late Oligocene (Chattian) coral-rich facies are well developed in Grotta San Michele Limestone (GSML) Gargano, Italy, as well as Asmari Formation, Zagros, Iran. The corals in GSML are surrounded by a mud-dominated matrix, indicating development in low-energy environments. The corals, are associated with meso-oligophotic components such as non-articulate red algae, rhodolith and Polystrata alba. However, the euphotic components such as articulated red-algae, and rare miliolids are associated with corals. Although these mesophotic corals can be mixed with euphotic components shed down from the shallower depth, the internal waves can be a factor to provide nutrient-rich water for coral colonies to develop in this low-energy settings.
Le onde interne sono delle perturbazioni che si propagano lungo la picnoclina, la superficie che delimita due masse d’acqua a differente densità. Sebbene siano ben note dagli oceanografi e dai biologi marini, il loro impatto sul record sedimentario è ancora poco conosciuto e documentato, e in alcuni casi completamente ignorato da Sedimentologi e Stratigrafi. Nei sistemi carbonatici le onde interne, oltre a creare gli stessi effetti idrodinamici dei sistemi silicoclastici, possono influenzare la produzione carbonatica in prossimità della picnoclina attraverso il pompaggio di acque più o meno ricche di nutrienti, creando un contesto ideale in cui le comunità bentoniche di metazoi possano proliferare. Infatti, la base della picnoclina è comunemente associata con la zona di massima concentrazione della clorofilla e che in alcuni contesti coincide con la parte bassa della zona fotica. Un altro fattore di controllo importante nei sistemi carbonatici è la penetrazione della luce che condiziona il tipo, la quantità e il luogo di produzione carbonatica. Recentemente, le onde interne sono state considerate come potenziale processo che potrebbe spiegare la presenza e sviluppo di numerose carbonate factories meso/oligophotiche e le loro peculiari associazioni di facies. Durante il Giurassico Superiore e l’Oligocene superiore, diversi sistemi carbonatici si sono sviluppati lungo i margini della Tetide o dell’area Mediterranea. In questo progetto di dottorato, sono stati considerati tre casi studio ricadenti in questo intervallo temporale allo scopo di caratterizzare le facies di margine biocostruito e il possibile ruolo delle onde interne nello sviluppo e ubicazione di questi sistemi carbonatici. Le facies ricche di stromatoporoidi del Giurassico Superiore dei Calcari di Monte Sacro (MSL) affiorano lungo il margine della Piattaforma Carbonatica Apula (ACP) nel Promontorio del Gargano. La MSL è caratterizzata da tre facies LF1-stromatoporoidi-rich, facies LF2-stromatoporoidi-coralli e facies LF3-stromatoporoidi-microbialiti. LF1 è la litofacies principale sviluppata nei MSL e caratterizzata dalla crescita di stromatoporoidi in condizioni mesofotiche a bassa energia (LF1-S1) associate a facies di alta energia intraclastiche-bioclastiche (LF1-S2). L'origine delle facies ad alta energia in MSL può essere collegata all'azione delle onde interne. In primo luogo, le onde interne possono fornire i nutrienti necessari per la crescita dei buildup a stromatoporoidi. Questi accumuli possono essere influenzati periodicamente da turbolenza, producendo una grande quantità di facies detritiche di alta energia (LF1-S2). Per i sistemi dell’Oligocene superiore sono stati scelti due sistemi carbonatici caratterizzati da facies con abbondanti coralli, ubicati rispettivamente nel Promontorio del Gargano e nell’Iran Centrale (Monti Zagros). La facies ricca di coralli dell'Oligocene superiore (Cattiano) è ben sviluppata nei Calcari di Grotta di San Michele (GSML) nel Gargano, e nella Formazione di Asmari, Monti Zagros, Iran. I coralli della GSML sono circondati da una matrice dominata da sedimenti fini fangosi, e che indica un ambiente a bassa energia. Sebbene questi coralli mesofotici possano essere mescolati con componenti eufotici le onde interne possono essere un fattore per fornire acqua ricca di nutrienti per le colonie di coralli che si sviluppino in queste condizioni a bassa energia.
The role of internal waves in ancient carbonate systems
KIANI HARCHEGANI, Farkhondeh
2019
Abstract
Internal waves are perturbations propagating along the pycnocline, a boundary layer between two different density water masses. Although they are well known by oceanographers, their impact on the sedimentary record still poorly documented. In carbonate settings, internal waves can influence the carbonate production at the depth of pycnocliene by pumping the nutrient-rich waters to the carbonate buildups and create an ideal setting where the metazoan communities can thrive. Recently, the role of internal waves, as a source of water turbulence, has been considered as a useful tool in the interpretation of mesophotic carbonate communities. During the Late Jurassic and Late Oligocene, extensive carbonate reefs have been developed along the Tethys. In this PhD project, two case studies from the Upper Jurassic stromatoporoid-rich facies and Late Oligocene (Chattian) coral-rich facies have been studied in order to study the role of internal waves in development of these carbonate communities. The Upper Jurassic stromatoporoid-rich facies of Monte Sacro Limestones (MSL) crop out along the platform margin of Apulia Carbonate Platform (ACP) in Gargano area. The stromatoporoid buildups in MSL are characterized by high percentage of high-energy debris-rich facies associated with low-energy facies. The origin of these high-energy facies are still matter of debates. The MSL is characterized by three lithofacies LF1- stromatoporoid-rich facies, LF2- stromatoporoid-coral facies, and LF3- stromatoporoid-microbial facies. LF1 is the main lithofacies developed in MSL and characterized by stromatoporoids growth in low-energy mesophotic condition (LF1-S1) associated with high-energy intraclastic-bioclastic rich facies (LF1-S2). The stromatoporoid-rich buildups (LF1) in ACP can be categorized as phototrophic-heterotrophic reefs generated in a pure carbonate environment. The light penetration was confined, resulted in the high development of light-independent micro-encrusters (Tubiphytes morronensis), in a mesophotic condition, where the environment was not ideal for light-dependent microencrusters (Lithocodium- Bacinella) to grow. The origin of high-energy facies developed associated with mesophotic stromatoporoid buildups in MSL can be linked to the effect of internal waves. Firstly, internal waves can provide nutrient-rich water needed by stromatoporoid buildups to grow. Latterly, the buildups can be affected by high-energy turbulence, producing a large amount of high-energy debris rich facies (LF1-S2) in MSL. Moving on to a different age, the Late Oligocene (Chattian) coral-rich facies are well developed in Grotta San Michele Limestone (GSML) Gargano, Italy, as well as Asmari Formation, Zagros, Iran. The corals in GSML are surrounded by a mud-dominated matrix, indicating development in low-energy environments. The corals, are associated with meso-oligophotic components such as non-articulate red algae, rhodolith and Polystrata alba. However, the euphotic components such as articulated red-algae, and rare miliolids are associated with corals. Although these mesophotic corals can be mixed with euphotic components shed down from the shallower depth, the internal waves can be a factor to provide nutrient-rich water for coral colonies to develop in this low-energy settings.File | Dimensione | Formato | |
---|---|---|---|
EMAS - Kiani Harchegani Final thesis-reduced .pdf
Open Access dal 03/09/2019
Dimensione
13.09 MB
Formato
Adobe PDF
|
13.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/72106
URN:NBN:IT:UNIFE-72106