Chapter 1. Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation The impact of the mitochondrial permeability transition (MPT), a sudden increase in the permeability of the inner mitochondrial membrane to small solutes, on cellular physiology is well characterized. In contrast, the composition and mode of action of the so-called “permeability transition pore complex” (PTPC), the supramolecular entity that triggers MPT, remain to be fully elucidated. In particular, the precise contributions of the mitochondrial F1FO ATP synthase or subunit thereof to the MPT are a matter of debate. By using biochemical and imaging approaches, we demonstrate here that F1FO ATP synthase dimers dissociate as the PTPC opens in response to classical MPT inducers. Accordingly, stabilizing F1FO ATP synthase dimers by various genetic approaches inhibited PTPC opening and MPT. Specific mutations in the F1FO ATP synthase c subunit that alter the conformation of the C-ring sensitized cells to MPT induction, and this could be reverted by stabilizing F1FO ATP synthase dimers. Conversely, rendering F1FO ATP synthase dimers more unstable, by genetic approaches failed to trigger PTPC opening in the presence of c subunit mutants that inhibit MPT. Overall, our findings indicate that PTPC opening is a multistep process that involves the dissociation of F1FO ATP synthase dimers followed by the formation of a poorly selective pore involving the C-ring. Chapter 2. Regulation of autophagy and PKCβ levels by PML is essential for MDSC high glucose-dependent adipogenesis The promyelocytic leukemia protein (PML) is a well-known oncosuppressor directly involved in human tumor development. Recently several reports have demonstrated an unexpected and critical role of PML in stem cell biology. In this study, the role of PML in adipogenesis of muscle derived mesenchymal stem cells (MDSC) was investigated. We showed that the genetic and pharmacological deletion of PML impaired the adipogenic differentiation of MDSC. In agreement with current studies reporting that autophagic mechanism are involved in mesenchymal stem cell differentiation, here PML is been shown to regulate adipogenic differentiation through its ability to modulate autophagic levels. Indeed pharmacological modulation of autophagy was reported to reverse the effects on adipogenesis due to deletion of PML. Moreover we identify that PML can act as PKCβ regulator. PKCβ levels increased in WT, but not in PMLKO. The overexpression of PKCβ in PMLKO is demonstrated to restore adipogenic differentiation. Chapter 3. Mitochondria-nucleus communication in mesenchymal stem cell differentiation: key role of acetyl-CoA transport system Growing evidence shows that cellular metabolism underlies stem cell fate, including pluripotency, differentiation and reprogramming. In addition to generating ATP, through oxidative phosphorylation, mitochondrial metabolism provides the building blocks to support biomass, such as amino acid and lipids, and is involved in cell signaling in determining stem cells fate. Here, we investigated if and how the distribution and the physiology of mitochondria of adult mesenchymal stem cells derived from adipose tissue (ADSCs) could change during adipogenic and osteogenic commitment. We showed that mitochondrial mass and mitochondrial respiration increased, especially in the early phase of differentiation process. We identified sites of contacts between mitochondria and nucleus, which increase during differentiation process, suggesting that mitochondria could communicate with nucleus to orchestrate differentiation. Acetyl-coA is a key metabolite that could link metabolism with transcription. Here, we showed that inhibition of mitochondrial acetyl-CoA transport system impaired osteogenesis leading to a reduction of H3K9 acetylation, an epigenetic osteogenic marker.
Capitolo 1. La permeabilità transitoria mitocondriale implica la dissociazione dei dimeri di ATP sintasi e la conformazione del C-ring Il termine poro di transizione di permeabilità mitocondriale (acronimo dall'inglese, mPTP) si riferisce ad un canale ipotetico responsabile di un'alterazione di permeabilità della membrana mitocondriale interna, nota come transizione di permeabilità di membrana (MPT). Attualmente le proteine componenti mPTP risultano perlopiù sconosciute, e in particolare il ruolo dell’ATP sintasi o delle sue subunità è fortemento dibattuto. In questo lavoro abbiamo dimostrato che l’apertura del mPTP è associata alla dissociazione dei dimeri di ATP sintasi. Infatti, stabilizzando i dimeri, grazie all’utilizzo di diversi approcci genetici, l’apetura del mPTP, e di conseguenza la MPT, è inibita; in accordo la destabilizzazione dei dimeri provoca un aumento della sensibilità del mPTP ad aprirsi in seguito ai classici stimoli. Inoltre abbiamo dimostrato come mutazioni nella subunità c dell’ATP sintasi, che causano l’alterazione della conformazione del C-ring, sono associate alla modulazione dell’attività di mPTP. Tale modulazione viene a mancare quando i dimeri vengono stabilizzati. Al contrario, quando i dimeri vengono resi meno stabili, una specifica mutazione nella subunità c (G83S), in grado di inibire la MPT, può inibire l’effetto provocato dalla destabilizzazione del dimero. Capitolo 2. La regolazione dell’ autofagia e di PKCβ da parte di PML è essenziale per l’adipogenesi di cellule staminali mesenchimali PML è un noto oncosoppressore direttamente coinvolto nello sviluppo di tumori umani. Recentemente diversi studi mostrano un ruolo di PML anche nella biologia delle cellule staminali. In questo lavoro ci siamo proposti di studiare il ruolo di PML nel processo di adipogenesi in cellule staminali mesenchimali (MDSC). La delezione, sia genetica che farmacologica, di PML altera il processo di adipogenesi delle MDSC, a supporto dell’ ipotesi per cui PML possa essere uno dei regolatori dell’adipogenesi. In accordo con recenti studi abbiamo dimostrato come PML sia in grado di regolare l’autofagia e, attraverso questa, il differenziamento adipogenico. Inoltre, per la prima volta, abbiamo identificato PML come possibile regolatore di PKCβ. In MDSC WT i livelli di PKCβ aumentano in seguito all’induzione dell’adipogenesi, al contrario questo incremento non si osserva in cellule derivanti da topi PML KO. L’overespressione di PKCβ nella condizione PML KO è in grado di ripristinare il corretto differenziamento adipogenico. Capitolo 3. La comunicazione mitocondri-nucleo è fondamentale nel differenziamento di cellule staminali mesenchimali Sempre più studi riportano come il metabolismo cellulare sia alla base del destino delle cellule staminali. Oltre a generare ATP, i metaboliti mitocondriali forniscono i substrati per la formazione di aminoacidi e lipidi. In questo lavoro ci siamo proposti di studiare la distribuzione e la fisiologia mitocondriale di cellule staminali mesenchimali, derivate da tessuto adiposo (ADSC), durante l’adipogenesi e l’osteogenesi. Abbiamo dimostrato come la massa e la respirazione mitocondriale aumentino soprattutto nelle fasi precoci del differenziamento. Abbiamo identificato siti di contatto tra mitocondri e nucleo, che aumentano durante i processi di differenziamento, suggerendo che la comunicazione nucleo-mitocondri possa orchestrarne i meccanismi. L’acetil-CoA è un metabolita chiave che potrebbe collegare il metabolismo mitocodriale all’ epigenetica e alla trascrizione genica. In questo lavoro abbiamo dimostrato come l’inibizione del sistema di trasporto dell’acetil-CoA dal mitocondrio al citosol sia in grado di inibire l’osteogenesi, riducendo l’acetilazione di H3K9, un noto marker epigenetico correlato all’osteogenesi.
Regulation of cell death and differentiation: new roles for ATP synthase, PML and mitochondria metabolites
MORGANTI, Claudia
2017
Abstract
Chapter 1. Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation The impact of the mitochondrial permeability transition (MPT), a sudden increase in the permeability of the inner mitochondrial membrane to small solutes, on cellular physiology is well characterized. In contrast, the composition and mode of action of the so-called “permeability transition pore complex” (PTPC), the supramolecular entity that triggers MPT, remain to be fully elucidated. In particular, the precise contributions of the mitochondrial F1FO ATP synthase or subunit thereof to the MPT are a matter of debate. By using biochemical and imaging approaches, we demonstrate here that F1FO ATP synthase dimers dissociate as the PTPC opens in response to classical MPT inducers. Accordingly, stabilizing F1FO ATP synthase dimers by various genetic approaches inhibited PTPC opening and MPT. Specific mutations in the F1FO ATP synthase c subunit that alter the conformation of the C-ring sensitized cells to MPT induction, and this could be reverted by stabilizing F1FO ATP synthase dimers. Conversely, rendering F1FO ATP synthase dimers more unstable, by genetic approaches failed to trigger PTPC opening in the presence of c subunit mutants that inhibit MPT. Overall, our findings indicate that PTPC opening is a multistep process that involves the dissociation of F1FO ATP synthase dimers followed by the formation of a poorly selective pore involving the C-ring. Chapter 2. Regulation of autophagy and PKCβ levels by PML is essential for MDSC high glucose-dependent adipogenesis The promyelocytic leukemia protein (PML) is a well-known oncosuppressor directly involved in human tumor development. Recently several reports have demonstrated an unexpected and critical role of PML in stem cell biology. In this study, the role of PML in adipogenesis of muscle derived mesenchymal stem cells (MDSC) was investigated. We showed that the genetic and pharmacological deletion of PML impaired the adipogenic differentiation of MDSC. In agreement with current studies reporting that autophagic mechanism are involved in mesenchymal stem cell differentiation, here PML is been shown to regulate adipogenic differentiation through its ability to modulate autophagic levels. Indeed pharmacological modulation of autophagy was reported to reverse the effects on adipogenesis due to deletion of PML. Moreover we identify that PML can act as PKCβ regulator. PKCβ levels increased in WT, but not in PMLKO. The overexpression of PKCβ in PMLKO is demonstrated to restore adipogenic differentiation. Chapter 3. Mitochondria-nucleus communication in mesenchymal stem cell differentiation: key role of acetyl-CoA transport system Growing evidence shows that cellular metabolism underlies stem cell fate, including pluripotency, differentiation and reprogramming. In addition to generating ATP, through oxidative phosphorylation, mitochondrial metabolism provides the building blocks to support biomass, such as amino acid and lipids, and is involved in cell signaling in determining stem cells fate. Here, we investigated if and how the distribution and the physiology of mitochondria of adult mesenchymal stem cells derived from adipose tissue (ADSCs) could change during adipogenic and osteogenic commitment. We showed that mitochondrial mass and mitochondrial respiration increased, especially in the early phase of differentiation process. We identified sites of contacts between mitochondria and nucleus, which increase during differentiation process, suggesting that mitochondria could communicate with nucleus to orchestrate differentiation. Acetyl-coA is a key metabolite that could link metabolism with transcription. Here, we showed that inhibition of mitochondrial acetyl-CoA transport system impaired osteogenesis leading to a reduction of H3K9 acetylation, an epigenetic osteogenic marker.File | Dimensione | Formato | |
---|---|---|---|
PhDthesis_MorgantiC.pdf
Open Access dal 11/03/2020
Dimensione
11.05 MB
Formato
Adobe PDF
|
11.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/72122
URN:NBN:IT:UNIFE-72122