On-chip switched capacitors voltage generators, also known as Charge Pumps (CPs), are among the most important building blocks of nonvolatile memories, since they allow to generate on chip the high-voltage needed for programming and erasing operation (in the order of tens of Volts) from the input supply voltage, which can be as low as 1V in modern applications. More recently, with the proliferation of the ultra-low-power sensor nodes employed in Wireless Sensor Networks (WSNs), Wireless Body Networks (WBNs), and Internet-of-Things (IoT) applications, which employ self-powered sensor nodes to gather data and share them with the other nodes, the interest about CPs has grown exponentially. The energy autonomy of the nodes is increased by scavenging energy from the environment (ambient or body) using different kinds of energy harvesters, such as photovoltaic cells, thermoelectric generators and vibrational sensors. Nevertheless, due to the heavy dependence of their output voltage from the operating conditions, these transducers are often unsuitable to directly feed the load. For this reason, a Power Management Integrated Circuit (PMIC) is mandatory employed to adapt the voltage and power levels with the maximum conversion efficiency. Among the various solutions, PMIC based on CPs represent an optimum choice for fully on-chip systems, since they are able to boost the low voltage at the output of the energy harvester to a level suitable for the analog and/or digital building blocks of the sensor node, without using bulky off-chip inductors. The topics of fast, energy-efficient or very-low input voltage designs, analysis, comparison and proposal of suitable new CP topologies for applications in nanometer technologies have been the focus of the research activity carried out in this thesis. The aim of this thesis is to provide a deep understanding of the challenges of fully-integrated boost voltage generator design, as well as to propose novel energy-efficient solutions at the transistor- and micro-architectural levels. The basic theoretical foundations are provided to set the stage for the comprehension of analyses and results . Exhaustive methodologies are presented and many analytical derivations are included, since they allow to gain an insight on the main dependencies of relevant parameters on circuital properties. Finally, several results, which have been derived by carrying out extensive simulation analyses and measurements on integrated chip prototypes are reported to emphasize the practical perspective of the work.
I generatori di tensione integrati basati su condensatori commutati, noti anche come pompe di carica (CP), sono tra i più importanti elementi costitutivi delle memorie non volatili, poiché consentono di generare sul chip l'alta tensione necessaria per le operazioni di programmazione e di cancellazione (nell'ordine di decine di Volt) a partire dalla tensione di alimentazione d'ingresso, che può arrivare fino a 1V nelle applicazioni moderne. Più recentemente, con la proliferazione dei nodi di sensori a bassissima potenza impiegati nelle applicazioni Wireless Sensor Networks (WSNs), Wireless Body Networks (WBNs) e Internet-of-Things (IoT), che utilizzano sensori autoalimentati per raccogliere dati e condividerli con gli altri nodi, l'interesse per le CP è cresciuto in modo esponenziale. L'autonomia energetica dei nodi viene aumentata recuperando energia dall'ambiente (ambiente circostante o corpo) utilizzando diversi tipi di raccoglitori di energia, come celle fotovoltaiche, generatori termoelettrici e sensori vibrazionali. Tuttavia, a causa della forte dipendenza della loro tensione di uscita dalle condizioni operative, questi trasduttori sono spesso inadatti ad alimentare direttamente il carico. Per questo motivo, è obbligatorio utilizzare un circuito integrato di gestione dell'alimentazione (PMIC) per adattare i livelli di tensione e potenza con la massima efficienza di conversione. Tra le varie soluzioni, i PMIC basati su CP rappresentano una scelta ottimale per i sistemi totalmente integrati, poiché sono in grado di aumentare la bassa tensione all'uscita dell'energy harvester a un livello adatto ai circuiti analogici e/o digitali costituenti il nodo, senza utilizzare ingombranti induttori esterni al chip. I temi di progettazione, analisi, confronto e proposta di nuove topologie di pompe di carica idonee per applicazioni realizzate con tecnologie nanometriche sono stati al centro dell'attività di ricerca svolta in questa tesi. Lo scopo di questa tesi è fornire una profonda comprensione delle sfide della progettazione di generatori di tensione elevatori completamente integrati, nonché proporre nuove soluzioni ad alta efficienza energetica a livello transistore e micro-architetturale. Vengono fornite le basi teoriche per la comprensione delle analisi e dei risultati. Vengono presentate metodologie esaustive e sono incluse molte derivazioni analitiche, poiché consentono di approfondire le principali dipendenze dei parametri rilevanti dalle proprietà circuitali. Infine, diversi risultati, che sono stati ottenuti effettuando simulazioni e misurazioni su prototipi integrati sono riportati per enfatizzare la prospettiva pratica del lavoro.
Generatori di tensione integrati basati su condensatore commutato per applicazioni energy harvesting
BALLO, ANDREA
2021
Abstract
On-chip switched capacitors voltage generators, also known as Charge Pumps (CPs), are among the most important building blocks of nonvolatile memories, since they allow to generate on chip the high-voltage needed for programming and erasing operation (in the order of tens of Volts) from the input supply voltage, which can be as low as 1V in modern applications. More recently, with the proliferation of the ultra-low-power sensor nodes employed in Wireless Sensor Networks (WSNs), Wireless Body Networks (WBNs), and Internet-of-Things (IoT) applications, which employ self-powered sensor nodes to gather data and share them with the other nodes, the interest about CPs has grown exponentially. The energy autonomy of the nodes is increased by scavenging energy from the environment (ambient or body) using different kinds of energy harvesters, such as photovoltaic cells, thermoelectric generators and vibrational sensors. Nevertheless, due to the heavy dependence of their output voltage from the operating conditions, these transducers are often unsuitable to directly feed the load. For this reason, a Power Management Integrated Circuit (PMIC) is mandatory employed to adapt the voltage and power levels with the maximum conversion efficiency. Among the various solutions, PMIC based on CPs represent an optimum choice for fully on-chip systems, since they are able to boost the low voltage at the output of the energy harvester to a level suitable for the analog and/or digital building blocks of the sensor node, without using bulky off-chip inductors. The topics of fast, energy-efficient or very-low input voltage designs, analysis, comparison and proposal of suitable new CP topologies for applications in nanometer technologies have been the focus of the research activity carried out in this thesis. The aim of this thesis is to provide a deep understanding of the challenges of fully-integrated boost voltage generator design, as well as to propose novel energy-efficient solutions at the transistor- and micro-architectural levels. The basic theoretical foundations are provided to set the stage for the comprehension of analyses and results . Exhaustive methodologies are presented and many analytical derivations are included, since they allow to gain an insight on the main dependencies of relevant parameters on circuital properties. Finally, several results, which have been derived by carrying out extensive simulation analyses and measurements on integrated chip prototypes are reported to emphasize the practical perspective of the work.File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato - BALLO ANDREA 20201115141746.pdf
accesso aperto
Dimensione
103.42 MB
Formato
Adobe PDF
|
103.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/72156
URN:NBN:IT:UNICT-72156