The Earth system, with the entering in the new Anthropocene Epoch, is facing increasing impacts from multi-sources. Among all the environments, coastal regions are the most vulnerable, dynamic and rapidly evolving systems on the planet. Moreover, for their position at the interface between sea and emerging lands, these ecosystems are characterised by substantial spatial and temporal variability and are exposed to the impacts of both terrestrial and marine origin. Threats from climate change and direct human disturbances can affect at a regional or global scale causing habitat loss and increases of the level of fragmentation. These disturbances can lead to severe transformations, and communities shift that can be linked to the reduction of the potential of natural ecosystems to recover from multiple stressors. Under the described scenarios valid and repeatable monitoring and mapping techniques are essential to identify and quantify anthropogenic or climatic stress and their effects on coastal environments. The use of remote sensing platforms can represent a valid solution to obtain synoptic spatiotemporal data of threatened environments. According to this necessity, the primal aims of this doctoral project have been to propose monitoring protocols for collecting and analysing remote sensing data in coastal regions around the world, integrating innovative platforms and processing techniques. This research provides new insights into remote data collection and elaboration on critical coastal environments through different spatial and temporal scales. Above and underwater sensing platforms like Satellite, Unmanned Aerial Vehicles (UAVs), underwater photogrammetry and multibeam echosounder were used to collect data, and the retrieved information was processed applying recently developed algorithms such as Structure from Motion, Object Base Image Analysis and Machine Learning. The publications realised during the PhD project confirmed the high potential of the integration of different platforms and processing methodologies. The produced protocols describe innovative practices for collecting and analysing data in coastal regions in order to asses pressing anthropogenic and climatic impacts. Besides, the outputs generated from the analyses allow to highlight the occurrence of communities shift and tracking subsequent recovery or decline; they will be useful to monitor the response of the environments and address future protection strategies.
Con l’avvento dell’Antropocene, una nuova epoca geologica caratterizzata dall’impatto delle attività umane sul clima e l’ambiente, il sistema Terra si trova a fronteggiare un netto aumento di fattori di stress di diversa origine. Tra tutti gli ecosistemi del pianeta, quelli delle regioni costiere sono sicuramente tra i più dinamici e vulnerabili. Questi sono caratterizzati da marcate dinamiche spazio-temporali e la loro posizione tra l’interfaccia terra acqua li rende soggetti ad impatti sia di origine terrestre che marina. Le minacce derivanti dai cambiamenti climatici e da un diretto impatto antropico possono danneggiare questi ambienti sia a livello locale che globale causando la perdita di habitat e un conseguente incremento della loro frammentazione. Questi disturbi possono portare a profonde trasformazioni e cambiamenti nella struttura delle comunità e, se ripetuti più volte in un breve periodo di tempo, causano una riduzione del potenziale degli ecosistemi di recuperare dopo impatti di diversa entità. In questo scenario sono essenziali valide e ripetibili tecniche di monitoraggio e mappatura per permettere di identificare e quantificare gli stress sia di natura antropica che climatica e i loro effetti sugli ecosistemi costieri. L’uso del telerilevamento per la raccolta dati rappresenta una valida soluzione per ottenere informazioni sinottiche degli ambienti impattati su diverse scale spazio temporali. Considerando queste necessità lo scopo principale del progetto di dottorato è stato quello di proporre nuovi protocolli di monitoraggio per la raccolta e l’analisi di dati da telerilevamento in regioni costiere, integrando l’uso di piattaforme e tecniche di processamento innovative. Questa ricerca descrive nuove prospettive per la raccolta di dati attraverso diverse scale temporali e spaziali usando piattaforme aeree e sottomarine. Satelliti, droni, fotogrammetria subacquea e tecniche di rilevamento acustico sono stati utilizzati per la raccolta dati in regioni costiere sia tropicali che temperate. Le informazioni raccolte sono state processate usando algoritmi sviluppati di recente come Structure from Motion (SfM), Object Base Image Analysis (OBIA) e Machine Learning. Gli articoli scientifici prodotti durante il progetto di dottorato hanno dimostrato l’elevato potenziale derivato dall’integrazione di differenti piattaforme e di metodologie di processamento dei dati. I protocolli descritti negli studi presenti in questa tesi illustrano pratiche innovative e ripetibili per la raccolta ed analisi di dati in aree costiere vulnerabili al fine di per poter valutare e quantificare gli impatti di natura antropica e climatica. I prodotti generati dalle analisi evidenziando l’occorrenza di mutamenti all’interno delle comunità e permettono di tracciare il loro declino o il potenziale recupero in un’ottica di monitoraggio e di sviluppo strategie di intervento e protezione.
Remote sensing across multiple platforms and spatial scales: monitoring and assessment of eco-geomorphological changes on climatically sensitive coastal areas
FALLATI, LUCA
2020
Abstract
The Earth system, with the entering in the new Anthropocene Epoch, is facing increasing impacts from multi-sources. Among all the environments, coastal regions are the most vulnerable, dynamic and rapidly evolving systems on the planet. Moreover, for their position at the interface between sea and emerging lands, these ecosystems are characterised by substantial spatial and temporal variability and are exposed to the impacts of both terrestrial and marine origin. Threats from climate change and direct human disturbances can affect at a regional or global scale causing habitat loss and increases of the level of fragmentation. These disturbances can lead to severe transformations, and communities shift that can be linked to the reduction of the potential of natural ecosystems to recover from multiple stressors. Under the described scenarios valid and repeatable monitoring and mapping techniques are essential to identify and quantify anthropogenic or climatic stress and their effects on coastal environments. The use of remote sensing platforms can represent a valid solution to obtain synoptic spatiotemporal data of threatened environments. According to this necessity, the primal aims of this doctoral project have been to propose monitoring protocols for collecting and analysing remote sensing data in coastal regions around the world, integrating innovative platforms and processing techniques. This research provides new insights into remote data collection and elaboration on critical coastal environments through different spatial and temporal scales. Above and underwater sensing platforms like Satellite, Unmanned Aerial Vehicles (UAVs), underwater photogrammetry and multibeam echosounder were used to collect data, and the retrieved information was processed applying recently developed algorithms such as Structure from Motion, Object Base Image Analysis and Machine Learning. The publications realised during the PhD project confirmed the high potential of the integration of different platforms and processing methodologies. The produced protocols describe innovative practices for collecting and analysing data in coastal regions in order to asses pressing anthropogenic and climatic impacts. Besides, the outputs generated from the analyses allow to highlight the occurrence of communities shift and tracking subsequent recovery or decline; they will be useful to monitor the response of the environments and address future protection strategies.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_750793.pdf
accesso aperto
Dimensione
7.87 MB
Formato
Adobe PDF
|
7.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/72589
URN:NBN:IT:UNIMIB-72589