Mutations in leucine-rich repeat kinase 2 (LRRK2) have been associated with Parkinson’s Disease (PD). One of the proposed mechanisms underlying the pathogenic effect of LRRK2 mutants in PD is the modulation of the autophagy-lysosomal pathway (ALP). Indeed, ALP impairment causes aberrant and misfolded α-synuclein (α-syn) accumulation, a common feature of idiopathic and LRRK2-related PD. In the first part of the study, LRRK2 kinase regulation of ALP, its age-dependence and relation with pSer129 α-synuclein inclusions were investigated in vivo. Striatal ALP markers were analyzed by Western blotting in 3, 12 and 20-month-old LRRK2 G2019S Knock-in (KI) mice (bearing an increased LRRK2 kinase activity), LRRK2 knock-out (KO) mice, LRRK2 D1994S KI mice (bearing a kinase-dead mutation, KD mice) and WT mice as controls. Striatal gene expression of ALP-related genes was investigated by RT-qPCR. Treatment with the lysosomotrophic compound Chloroquine, CQ, was performed to assess the autophagic flux in vivo. The activity of the lysosomal enzyme Glucocerebrosidase (GCase) was measured in the striatum of mice at 3 and 12 months. Finally, immunofluorescence analysis was conducted to evaluate whether LC3B levels and pSer129 α-synuclein accumulate in striatal MAP2+ and nigral TH+ neurons. The main findings of the first part of the study are that KD mice exhibited age-dependent accumulation of LC3-I, p62, LAMP2 and GAPDH levels, coupled with a reduced p-mTOR levels and mTOR and TFEB gene expression. Upon CQ treatment, LC3-II/I ratio was reduced in KD mice, indicating a defective autophagic flux. Conversely, G2019S KI mice showed only LAMP2 accumulation and downregulation of several ALP key genes, like MAP1LC3B, p62, mTOR and TFEB. Striatal lysosomal GCase activity was found to be increased in both LRRK2-kinase absent genotypes from 3 months of age onwards. Since these data were suggestive of an ALP impairment in aged KD mice, we next investigated whether KD mice were more susceptible to α-synuclein neuropathology in vivo. To this aim, AAV2/9 carrying h-α-syn was injected in the substantia nigra of 12-month-old G2019S KI, KD and WT mice. Motor behavior test was performed one, two and three months after injection. At the end, immunohistochemistry analysis was conducted to assess α-synuclein neuropathology and dopaminergic nigrostriatal neurodegeneration. KD mice showed a mild worsening of motor ability in the drag test in the absence of degeneration of dopaminergic nigral neurons or striatal terminals. Nonetheless, KD mice showed enhanced transgene and α-synuclein levels in striatum and substantia nigra. Altogether, these data support the view that LRRK2 kinase silencing causes early deregulation of GCase activity, and late impairment of autophagy and facilitation of α-synuclein neuropathology. Overall, this study contributes to shed lights into the complex modulation exerted by LRRK2 over ALP in vivo, demonstrating that a finely tuned LRRK2 kinase activity is needed to preserve ALP function and prevent α-synuclein accumulation in PD.

Mutazioni nel gene che codifica per la proteina leucine-rich repeat kinase 2 (LRRK2) sono state associate alla malattia di Parkinson (MP). Uno dei possibili meccanismi attraverso cui LRRK2 esercita la sua azione tossica nella MP è la modulazione del sistema autofagia-lisosoma. Alterazioni del sistema autofagia-lisosoma favoriscono l’accumulo di α-sinucleina, una caratteristica tipica della MP idiopatica e LRRK2-correlata. Nella prima parte di questo studio, è stata investigata la regolazione LRRK2-mediata del sistema autofagia-lisosoma, la sua età dipendenza, la sua correlazione con le inclusioni di α-sinucleina fosforilata alla serina 129 (pSer129) in vivo. I livelli di marcatori del sistema autofagia-lisosoma sono stati misurati mediante la tecnica del Western blotting in topi LRRK2 G2019S KI (esprimenti un’aumentata attività chinasica), LRRK2 KO, LRRK2 D1994S KI (esprimenti un’attività chinasica silenziata; topi kinase-dead, KD) e i WT di controllo, aventi 3, 12 e 20 mei di età. L’espressione di geni associati ad autofagia e lisosomi è stata misurata in striato utilizzando la tecnica della PCR quantitativa. Inoltre, i topi sono stati trattati con clorochina per determinare l’entità del flusso autofagico in vivo. L’attività dell’enzima lisosomiale Glucocerebrosidasi (GCase) è stata misurata nello striato dei topi di 3 e 12 mesi. In fine, analisi in immunofluorescenza è stata condotta per valutare gli accumuli di LC3B e pSer129 α-sinucleina in neuroni striatali MAP2-positivi e neuroni dopaminergici TH-positivi. I risultati salienti di questo primo studio consistono nell’aumento dei livelli di LC3-I, LAMP2, GAPDH, associato ad una riduzione nei livelli di mTOR fosforilato e nell’espressione genica di mTOR e TFEB nei topi KD a 12 mesi. Dopo trattamento con clorochina, i topi KD hanno dimostrato una riduzione nel rapporto LC3-II/I, a supporto dell’ipotesi di un ridotto flusso autofagico. I topi G2019S KI hanno mostrato solo un accumulo della proteina LAMP2 e una ridotta espressione dei geni MAP1LC3B, p62, mTOR and TFEB. I topi KD e KO hanno esibito anche un’elevata attività enzimatica di GCase fin dai 3 mesi d’età. Dal momento che questi dati suggeriscono che il sistema autofagia-lisosomi è inibito nei topi KD di 12 mesi, abbiamo voluto investigare se questo genotipo risultasse più suscettibile all’accumulo di α-sinucleina. Gli animali sono stati iniettati per via stereotassica in sostanza nera con un vettore virale adeno-associato di sierotipo 2/9 (AAV2/9) veicolante α-sinucleina umana mutata A53T (h-α-syn A53T). Sono stati condotti dei test per monitorare l’attività motoria a uno, due e tre mesi dall’iniezione virale. Analisi immunoistochimiche sono state svolte per valutare lo sviluppo della patologia associata all’accumulo di α-sinucleina e i livelli di neurodegenerazione del tratto nigrostriatale. I topi KD mostravano un leggero peggioramento dell’attività motoria nel drag test, in assenza di neurodegenerazione dei neuroni dopaminergici nigrali e delle terminali dopaminergiche striatali. Tuttavia, gli stessi animali presentavano un’elevata espressione del transgene in entrambe le aree, associata ad elevati livelli striatali e nigrali di α-sinucleina murina. Nel complesso, questi dati sostengono l’ipotesi che il silenziamento dell’attività chinasica causi una precoce disinibizione dell’attività di GCase e una tardiva inibizione dell’autofagia e facilitazione della sinucleinopatia. Questo studio contribuisce a fornire nuove evidenze riguardanti il complesso controllo esercitato da LRRK2 nel sistema autofagia-lisosoma in vivo, dimostrando come una fine regolazione dell’attività chinasica di LRRK2 risulta necessaria per garantire una normale attività autofagica e, quindi, prevenire l'accumulo di α-sinucleina nella MP.

LRRK2 regulates Glucocerebrosidase activity and autophagy in vivo

ALBANESE, FEDERICA
2022

Abstract

Mutations in leucine-rich repeat kinase 2 (LRRK2) have been associated with Parkinson’s Disease (PD). One of the proposed mechanisms underlying the pathogenic effect of LRRK2 mutants in PD is the modulation of the autophagy-lysosomal pathway (ALP). Indeed, ALP impairment causes aberrant and misfolded α-synuclein (α-syn) accumulation, a common feature of idiopathic and LRRK2-related PD. In the first part of the study, LRRK2 kinase regulation of ALP, its age-dependence and relation with pSer129 α-synuclein inclusions were investigated in vivo. Striatal ALP markers were analyzed by Western blotting in 3, 12 and 20-month-old LRRK2 G2019S Knock-in (KI) mice (bearing an increased LRRK2 kinase activity), LRRK2 knock-out (KO) mice, LRRK2 D1994S KI mice (bearing a kinase-dead mutation, KD mice) and WT mice as controls. Striatal gene expression of ALP-related genes was investigated by RT-qPCR. Treatment with the lysosomotrophic compound Chloroquine, CQ, was performed to assess the autophagic flux in vivo. The activity of the lysosomal enzyme Glucocerebrosidase (GCase) was measured in the striatum of mice at 3 and 12 months. Finally, immunofluorescence analysis was conducted to evaluate whether LC3B levels and pSer129 α-synuclein accumulate in striatal MAP2+ and nigral TH+ neurons. The main findings of the first part of the study are that KD mice exhibited age-dependent accumulation of LC3-I, p62, LAMP2 and GAPDH levels, coupled with a reduced p-mTOR levels and mTOR and TFEB gene expression. Upon CQ treatment, LC3-II/I ratio was reduced in KD mice, indicating a defective autophagic flux. Conversely, G2019S KI mice showed only LAMP2 accumulation and downregulation of several ALP key genes, like MAP1LC3B, p62, mTOR and TFEB. Striatal lysosomal GCase activity was found to be increased in both LRRK2-kinase absent genotypes from 3 months of age onwards. Since these data were suggestive of an ALP impairment in aged KD mice, we next investigated whether KD mice were more susceptible to α-synuclein neuropathology in vivo. To this aim, AAV2/9 carrying h-α-syn was injected in the substantia nigra of 12-month-old G2019S KI, KD and WT mice. Motor behavior test was performed one, two and three months after injection. At the end, immunohistochemistry analysis was conducted to assess α-synuclein neuropathology and dopaminergic nigrostriatal neurodegeneration. KD mice showed a mild worsening of motor ability in the drag test in the absence of degeneration of dopaminergic nigral neurons or striatal terminals. Nonetheless, KD mice showed enhanced transgene and α-synuclein levels in striatum and substantia nigra. Altogether, these data support the view that LRRK2 kinase silencing causes early deregulation of GCase activity, and late impairment of autophagy and facilitation of α-synuclein neuropathology. Overall, this study contributes to shed lights into the complex modulation exerted by LRRK2 over ALP in vivo, demonstrating that a finely tuned LRRK2 kinase activity is needed to preserve ALP function and prevent α-synuclein accumulation in PD.
31-gen-2022
Inglese
Mutazioni nel gene che codifica per la proteina leucine-rich repeat kinase 2 (LRRK2) sono state associate alla malattia di Parkinson (MP). Uno dei possibili meccanismi attraverso cui LRRK2 esercita la sua azione tossica nella MP è la modulazione del sistema autofagia-lisosoma. Alterazioni del sistema autofagia-lisosoma favoriscono l’accumulo di α-sinucleina, una caratteristica tipica della MP idiopatica e LRRK2-correlata. Nella prima parte di questo studio, è stata investigata la regolazione LRRK2-mediata del sistema autofagia-lisosoma, la sua età dipendenza, la sua correlazione con le inclusioni di α-sinucleina fosforilata alla serina 129 (pSer129) in vivo. I livelli di marcatori del sistema autofagia-lisosoma sono stati misurati mediante la tecnica del Western blotting in topi LRRK2 G2019S KI (esprimenti un’aumentata attività chinasica), LRRK2 KO, LRRK2 D1994S KI (esprimenti un’attività chinasica silenziata; topi kinase-dead, KD) e i WT di controllo, aventi 3, 12 e 20 mei di età. L’espressione di geni associati ad autofagia e lisosomi è stata misurata in striato utilizzando la tecnica della PCR quantitativa. Inoltre, i topi sono stati trattati con clorochina per determinare l’entità del flusso autofagico in vivo. L’attività dell’enzima lisosomiale Glucocerebrosidasi (GCase) è stata misurata nello striato dei topi di 3 e 12 mesi. In fine, analisi in immunofluorescenza è stata condotta per valutare gli accumuli di LC3B e pSer129 α-sinucleina in neuroni striatali MAP2-positivi e neuroni dopaminergici TH-positivi. I risultati salienti di questo primo studio consistono nell’aumento dei livelli di LC3-I, LAMP2, GAPDH, associato ad una riduzione nei livelli di mTOR fosforilato e nell’espressione genica di mTOR e TFEB nei topi KD a 12 mesi. Dopo trattamento con clorochina, i topi KD hanno dimostrato una riduzione nel rapporto LC3-II/I, a supporto dell’ipotesi di un ridotto flusso autofagico. I topi G2019S KI hanno mostrato solo un accumulo della proteina LAMP2 e una ridotta espressione dei geni MAP1LC3B, p62, mTOR and TFEB. I topi KD e KO hanno esibito anche un’elevata attività enzimatica di GCase fin dai 3 mesi d’età. Dal momento che questi dati suggeriscono che il sistema autofagia-lisosomi è inibito nei topi KD di 12 mesi, abbiamo voluto investigare se questo genotipo risultasse più suscettibile all’accumulo di α-sinucleina. Gli animali sono stati iniettati per via stereotassica in sostanza nera con un vettore virale adeno-associato di sierotipo 2/9 (AAV2/9) veicolante α-sinucleina umana mutata A53T (h-α-syn A53T). Sono stati condotti dei test per monitorare l’attività motoria a uno, due e tre mesi dall’iniezione virale. Analisi immunoistochimiche sono state svolte per valutare lo sviluppo della patologia associata all’accumulo di α-sinucleina e i livelli di neurodegenerazione del tratto nigrostriatale. I topi KD mostravano un leggero peggioramento dell’attività motoria nel drag test, in assenza di neurodegenerazione dei neuroni dopaminergici nigrali e delle terminali dopaminergiche striatali. Tuttavia, gli stessi animali presentavano un’elevata espressione del transgene in entrambe le aree, associata ad elevati livelli striatali e nigrali di α-sinucleina murina. Nel complesso, questi dati sostengono l’ipotesi che il silenziamento dell’attività chinasica causi una precoce disinibizione dell’attività di GCase e una tardiva inibizione dell’autofagia e facilitazione della sinucleinopatia. Questo studio contribuisce a fornire nuove evidenze riguardanti il complesso controllo esercitato da LRRK2 nel sistema autofagia-lisosoma in vivo, dimostrando come una fine regolazione dell’attività chinasica di LRRK2 risulta necessaria per garantire una normale attività autofagica e, quindi, prevenire l'accumulo di α-sinucleina nella MP.
LRRK2; autophagy; Glucocerebrosidase; Parkinson's Disease; CMA
MORARI, Michele
Università degli studi di Ferrara
File in questo prodotto:
File Dimensione Formato  
PhD_thesis_Albanese Federica.pdf

accesso aperto

Dimensione 46 MB
Formato Adobe PDF
46 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/72856
Il codice NBN di questa tesi è URN:NBN:IT:UNIFE-72856