This thesis describes the research activity carried out on the analysis of single and multiple robotic platforms. Autonomous unmanned vehicles are widely used, originally made for military applications, now they are also spreading in the civil sector. In general, robots are used in various application fields such as agriculture, exploration and surveillance. Robots, when equipped with specific sensors, can be used to identify risk factors, increasing the speed of execution and at the same time reducing the risk to personnel. Unmanned aerial vehicles (UAVs), increasingly popular, are an important asset in inhospitable or inaccessible scenarios. Sometimes there are application scenarios in which a single robot is not enough and for this reason multi-robot systems have been introduced. The term Swarm indicates the bio-inspired behavior of a set of agents, often homogeneous and with the same goal. Just as animals come together in nature to solve a common problem, autonomous mobile robots can also work together to perform challenging tasks. Research on distributed robotic systems is strongly supported by the robotics community, as evidenced by the multiple projects that make use of more than one robotic platform for the same mission. In particular, the most used platforms in the swarm field are UAVs, due to their maneuverability. Robotics researchers have been studying this type of mobile robotic systems that have been developed for decades. Multi-robot systems have emerged as a suitable alternative to single robots, as they can be more efficient and fault tolerant. However, the complexity of these multi-robot systems involves several aspects, including communication between robots, types of platforms, localization, environment mapping and motion coordination. Initially, homogeneous types of robots were used, as the idea was to split the tasks among several robots to speed up the mission execution. However, the collaboration of identical platforms is often not enough to perform more challenging tasks, since all the employed platforms suffer from the same limitations. Recent studies show how the creation of cooperating heterogeneous multi-robots can increase efficiency since they only exploit the pros of each individual platform, thus overcoming their own limitations. The present thesis reports a collection of works involving the use of single robots and homogeneous and heterogeneous multi-robot systems, aimed at performing challenging tasks in real-world scenarios.
Questa tesi descrive l'attività di ricerca svolta sull'analisi di piattaforme robotiche singole e multiple. Molto utilizzati sono i veicoli autonomi senza pilota, originariamente realizzati per applicazioni militari, ora si stanno diffondendo anche nel settore civile. In generale, i robot sono utilizzati in vari campi di applicazione come l'agricoltura, l'esplorazione e la sorveglianza. I robot, quando dotati di sensori specifici, possono essere utilizzati per identificare i fattori di rischio, aumentando la velocità di esecuzione e allo stesso tempo riducendo il rischio per il personale. I veicoli aerei senza pilota (UAV), sempre più diffusi, sono una risorsa importante in scenari inospitali o inaccessibili. A volte ci sono scenari applicativi in cui un solo robot non basta e per questo sono stati introdotti sistemi multi-robot. Il termine Sciame indica il comportamento bioispirato di un insieme di agenti, spesso omogenei e con lo stesso obiettivo. Proprio come gli animali si uniscono in natura per risolvere un problema comune, anche i robot mobili autonomi possono lavorare insieme per svolgere compiti impegnativi. La ricerca sui sistemi robotici distribuiti è fortemente supportata dalla comunità della robotica, come dimostrano i molteplici progetti che utilizzano più di una piattaforma robotica per la stessa missione. In particolare, le piattaforme più utilizzate nel campo dello sciame sono gli UAV, per la loro manovrabilità. I ricercatori di robotica hanno studiato questo tipo di sistemi robotici mobili che sono stati sviluppati per decenni. I sistemi multi-robot sono emersi come un'alternativa adeguata ai robot singoli, in quanto possono essere più efficienti e tolleranti ai guasti. Tuttavia, la complessità di questi sistemi multi-robot coinvolge diversi aspetti, tra cui la comunicazione tra i robot, i tipi di piattaforme, la localizzazione, la mappatura dell'ambiente e il coordinamento del movimento. Inizialmente sono stati utilizzati tipi omogenei di robot, poiché l'idea era di dividere i compiti tra più robot per accelerare l'esecuzione della missione. Tuttavia, la collaborazione di piattaforme identiche spesso non è sufficiente per svolgere compiti più impegnativi, poiché tutte le piattaforme utilizzate soffrono delle stesse limitazioni. Studi recenti mostrano come la creazione di multi-robot eterogenei cooperanti possa aumentare l'efficienza poiché sfruttano solo i vantaggi di ogni singola piattaforma, superando così i propri limiti. La presente tesi presenta una raccolta di lavori che prevedono l'uso di robot singoli e sistemi multi-robot omogenei ed eterogenei, volti a svolgere compiti impegnativi in scenari del mondo reale.
Progettazione e controllo di applicazioni con sistemi multirobot
SUTERA, GIUSEPPE
2022
Abstract
This thesis describes the research activity carried out on the analysis of single and multiple robotic platforms. Autonomous unmanned vehicles are widely used, originally made for military applications, now they are also spreading in the civil sector. In general, robots are used in various application fields such as agriculture, exploration and surveillance. Robots, when equipped with specific sensors, can be used to identify risk factors, increasing the speed of execution and at the same time reducing the risk to personnel. Unmanned aerial vehicles (UAVs), increasingly popular, are an important asset in inhospitable or inaccessible scenarios. Sometimes there are application scenarios in which a single robot is not enough and for this reason multi-robot systems have been introduced. The term Swarm indicates the bio-inspired behavior of a set of agents, often homogeneous and with the same goal. Just as animals come together in nature to solve a common problem, autonomous mobile robots can also work together to perform challenging tasks. Research on distributed robotic systems is strongly supported by the robotics community, as evidenced by the multiple projects that make use of more than one robotic platform for the same mission. In particular, the most used platforms in the swarm field are UAVs, due to their maneuverability. Robotics researchers have been studying this type of mobile robotic systems that have been developed for decades. Multi-robot systems have emerged as a suitable alternative to single robots, as they can be more efficient and fault tolerant. However, the complexity of these multi-robot systems involves several aspects, including communication between robots, types of platforms, localization, environment mapping and motion coordination. Initially, homogeneous types of robots were used, as the idea was to split the tasks among several robots to speed up the mission execution. However, the collaboration of identical platforms is often not enough to perform more challenging tasks, since all the employed platforms suffer from the same limitations. Recent studies show how the creation of cooperating heterogeneous multi-robots can increase efficiency since they only exploit the pros of each individual platform, thus overcoming their own limitations. The present thesis reports a collection of works involving the use of single robots and homogeneous and heterogeneous multi-robot systems, aimed at performing challenging tasks in real-world scenarios.File | Dimensione | Formato | |
---|---|---|---|
Phd_Thesis_Sutera_Giuseppe.pdf
accesso solo da BNCF e BNCR
Dimensione
4.17 MB
Formato
Adobe PDF
|
4.17 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/73303
URN:NBN:IT:UNICT-73303