In the field of neuroncology, radiation therapy has clearly acquired a central role for the treatment of aggressive tumors, such as GlioBlastoMa (GBM). GBM is the most common malignant and radioresistant brain tumor in adults, characterized by an exiguous life expectancy, with median survival of 6–12 months after diagnosis. The radioresistance of GBM is mainly determined by the occurrence of hypoxic regions, where the indirect effects of ionizing radiation are largely reduced. Moreover, hypoxia is involved in the activation of intracellular signaling pathways mediated by SRC proto-oncogene non-receptor tyrosine kinase (SRC), that leads to proliferation, migration and invasion effects. For this reason, new molecularly targeted drugs for SRC inhibition combined with radiation therapy could increase the effect of ionizing radiation (X-rays for radiotherapy and protons for proton therapy or hadrontherapy), blocking specific pathways of radioresistance. The aim of this project was to evaluate the synergic radiosensitive effect of a new SRC inhibitor (Si306, Lead Discovery Siena) in combination with radiation therapy for GBM treatment. In a first work, Si306 was tested with proton therapy, demonstrating a radiosensitive effect. Proton therapy experiments were performed at the National Institute for Nuclear Physics, Laboratori Nazionali del Sud, (INFN-LNS) in Catania. Clonogenic assay and molecular pathways analysis were performed to evaluate the surviving fraction and the cell network modulation respectively, confirming the effectiveness of proton therapy in combination with the Si306. In a second work, the radiosensitive effect of Si306, in combination with X-rays irradiation, was evaluated comparing normoxic (21% of oxygen) and hypoxic (1% of oxygen) conditions. In addition to clonogenic assay, γH2AX molecular marker detection by immunofluorescence was performed to quantify the radiation-induced DNA double-strand break formation and the DNA damage repair ability. The role of SRC inhibition on migration was also evaluated by wound healing assay. These experiments were performed at the research unit “Imagerie et Stratégies Thérapeutiques des pathologies Cérébrales et Tumorales” (ISTCT), located in the Cyceron center of Caen, France. It was demonstrated that Si306 exhibited a synergistic effect with X-rays, decreasing radioresistance induced by hypoxia. In conclusion, while further in vitro and in vivo investigations are required, the encouraging data confirms Si306 as a novel putative drug to overcome GBM radioresistance.
Nell’ambito della neuroncologia, la radioterapia ha chiaramente acquisito un ruolo centrale per il trattamento di tumori aggressivi, come il GlioBlastoMa (GBM). Il GBM è il tumore più maligno, radioresistente e comune negli adulti, caratterizzato da un'aspettativa di vita esigua, con una sopravvivenza media di 6-12 mesi dopo la diagnosi. La radioresistenza del GBM è determinata principalmente dalla presenza di regioni ipossiche, in cui gli effetti indiretti delle radiazioni ionizzanti sono ampiamente ridotti. Inoltre, l'ipossia è coinvolta nell'attivazione delle vie di segnalazione intracellulari mediate dal proto-oncogene SRC (SRC), la cui attivazione determina effetti di proliferazione, migrazione ed invasione. Per questo motivo, l'inibizione della proteina SRC mediante nuovi farmaci ad azione bersaglio molecolare, in associazione con la radioterapia, potrebbero aumentare l'effetto delle radiazioni ionizzanti (definiti raggi X, nel caso della radioterapia convenzionale e, protoni, nel caso della protonterapia o dell’adroterapia), bloccando specifiche vie di radioresistenza. Lo scopo di questo progetto è stato quello di valutare l'effetto sinergico e radiosensibilizzante di un innovativo inibitore di SRC (Si306, Lead Discovery Siena) in combinazione con la radioterapia e protonterapia per il trattamento del GBM. In un primo lavoro, Si306 è stato testato con la protonterapia, dimostrando un effetto radiosensibilizzante. Gli esperimenti di protonterapia sono stati eseguiti presso l'Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, (INFN-LNS) di Catania. Il saggio clonogenico e l'analisi dei pathway molecolari sono stati eseguiti per valutare rispettivamente la frazione di cellule sopravvivente e la modulazione delle vie di segnalazione cellulari, confermando l'efficacia della protonterapia in combinazione con Si306. In un secondo lavoro, è stato valutato l'effetto radiosensibilizzante di Si306, in combinazione con i raggi X, confrontando condizioni normossiche (21% di ossigeno) e ipossiche (1% di ossigeno). Oltre al saggio clonogenico, è stata eseguita la rilevazione del biomarcatore molecolare γH2AX mediante immunofluorescenza, per quantificare la generazione di rotture a doppio filamento del DNA indotte dalle radiazioni e la capacità di riparazione del danno al DNA. Inoltre, il ruolo dell'inibizione di SRC sulla migrazione è stata valutata mediante saggio wound healing. Questi esperimenti sono stati eseguiti presso l'unità di ricerca “Imagerie et Stratégies Thérapeutiques des patologies Cérébrales et Tumorales” (ISTCT), situata nell’istituto Cyceron di Caen, Francia. È stato dimostrato che Si306 garantisce un effetto sinergico con i raggi X, diminuendo la radioresistenza indotta dall'ipossia. In conclusione, sebbene siano necessarie ulteriori indagini in vitro ed in vivo, i dati incoraggianti confermano Si306 come un nuovo farmaco candidato per affrontare con successo la radioresistenza del GBM.
Inibizione di SRC in combinazione con radioterapia e protonterapia: una strategia sinergica per il trattamento del glioblastoma
TORRISI, FILIPPO
2021
Abstract
In the field of neuroncology, radiation therapy has clearly acquired a central role for the treatment of aggressive tumors, such as GlioBlastoMa (GBM). GBM is the most common malignant and radioresistant brain tumor in adults, characterized by an exiguous life expectancy, with median survival of 6–12 months after diagnosis. The radioresistance of GBM is mainly determined by the occurrence of hypoxic regions, where the indirect effects of ionizing radiation are largely reduced. Moreover, hypoxia is involved in the activation of intracellular signaling pathways mediated by SRC proto-oncogene non-receptor tyrosine kinase (SRC), that leads to proliferation, migration and invasion effects. For this reason, new molecularly targeted drugs for SRC inhibition combined with radiation therapy could increase the effect of ionizing radiation (X-rays for radiotherapy and protons for proton therapy or hadrontherapy), blocking specific pathways of radioresistance. The aim of this project was to evaluate the synergic radiosensitive effect of a new SRC inhibitor (Si306, Lead Discovery Siena) in combination with radiation therapy for GBM treatment. In a first work, Si306 was tested with proton therapy, demonstrating a radiosensitive effect. Proton therapy experiments were performed at the National Institute for Nuclear Physics, Laboratori Nazionali del Sud, (INFN-LNS) in Catania. Clonogenic assay and molecular pathways analysis were performed to evaluate the surviving fraction and the cell network modulation respectively, confirming the effectiveness of proton therapy in combination with the Si306. In a second work, the radiosensitive effect of Si306, in combination with X-rays irradiation, was evaluated comparing normoxic (21% of oxygen) and hypoxic (1% of oxygen) conditions. In addition to clonogenic assay, γH2AX molecular marker detection by immunofluorescence was performed to quantify the radiation-induced DNA double-strand break formation and the DNA damage repair ability. The role of SRC inhibition on migration was also evaluated by wound healing assay. These experiments were performed at the research unit “Imagerie et Stratégies Thérapeutiques des pathologies Cérébrales et Tumorales” (ISTCT), located in the Cyceron center of Caen, France. It was demonstrated that Si306 exhibited a synergistic effect with X-rays, decreasing radioresistance induced by hypoxia. In conclusion, while further in vitro and in vivo investigations are required, the encouraging data confirms Si306 as a novel putative drug to overcome GBM radioresistance.File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato - TORRISI FILIPPO 20210129182256.pdf
accesso aperto
Dimensione
5.84 MB
Formato
Adobe PDF
|
5.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/73317
URN:NBN:IT:UNICT-73317