This work of thesis is the summary of three years of PhD activities during which several case studies have been investigated, within the field of the multi-functional Additive Manufacturing, by exploiting different 3D printing techniques. It is a research field that aims to investigate processes capable of combining several kinds of different materials within a component, such that the resulting component itself has a higher degree of functionality than would normally be found in an originally part produced through a certain manufacturing process. This approach, which relies on 3D printing as starting technique of fabrication, is justified by the fact that, in the modern industry panorama, it is more and more common the demands of practical applications that need complex structures, tailored objects and special functions. Within this context the Additive Manufacturing is wide spreading as innovative technique of production where it is necessary to redesign products with the aim to improve their performance, by quickly developing a required customization to cope with customers' real - time demands, and to make production cost more efficient. In this research activity many different AM techniques have been investigated to produce the desired functional components, such as the most common one, i.e., the Fused Deposition Modeling (FDM) and the most innovative and recent one, i.e. the Projection Micro-Stereolithography (PSL), properly combined with nanostructured coatings. In detail, several functional components requiring precise features and functionalities within the field of microfluidic, sensors and medical fields have been designed, manufactured and fully-characterized with the aim to assess the desired requirements for each of them. More in detail, in the first case study, the PSL 3D printing technique was exploited to realize a micro-optofluidic devices which must address different functionalities such as, optical transparency, dimensional tolerances, no fluid leakage and a suitable surface's chemistry. Next, in the second case study, surface plasmon resonance sensors showing high performance were developed by exploiting the inkjet 3D printing technique properly combined with tailoring strategies. In this case we were able to add to the optical transparency two required functions: ability to trigger the surface plasmonic resonance phenomenon together with refractive index and temperature monitoring. In the third case study a proof of concept for the manufacturing of a customized and lightweight lower - limb prostheses having built-in functional elements, such as sensors, was fabricated. In the latter case study, we tried to expand the lessons learned on a macroscale application. In this case, the functions of recycling and easy disassembling were also addressed by using some novel recyclable epoxy resins. The use of these resins is interesting as it might pave the way for complex assembly enabling the recovery of precious sensors at the end of life of the assembly. In the end, functional scaffolds having anti-biofilm properties have been developed. It must be highlighted that it was decided to carry out the first trials on Polyethersulfone (PES) electrospun fibers and then to extend the approach to 3D printed Polyether ether ketone (PEEK) scaffolds. This strategy was selected because the PES electrospun veils are suitable as 3D scaffolds for mimicking the extracellular matrix (ECM) very well, their production is less expensive than the 3D printed Polyether ether ketone (PEEK) one, and it was convenient and faster to carry out the antibacterial tests on electrospun veils. Whilst, next, using the AM approach allowed to develop scaffolds with a combined control on the mesoscale, achieved by using the FDM technique, and nanoscale by growing the functional oxides. Conversely, by using the electrospun scaffolds the control on the mesoscale is not achievable.
Questo lavoro di tesi è la sintesi di tre anni di attività di dottorato durante i quali sono stati indagati diversi casi studio, nell'ambito della produzione additiva multifunzionale, sfruttando diverse tecniche di stampa 3D. È un campo di ricerca che mira ad indagare processi in grado di combinare diversi tipi di materiali all'interno di un componente, in modo tale che il componente risultante abbia un grado di funzionalità più elevato rispetto a quello che si avrebbe in una parte prodotta attraverso un tradizionale processo di fabbricazione. Questo approccio, che si basa sulla stampa 3D come tecnica di produzione di partenza, è giustificato dal fatto che, nel panorama industriale moderno, sono sempre più comuni le esigenze di applicazioni pratiche che richiedono strutture complesse, oggetti su misura e funzioni speciali. In questo contesto si sta diffondendo la manifattura additiva (AM) come tecnica innovativa di produzione, nella quale è necessario riprogettare i prodotti con l'obiettivo di migliorarne le prestazioni, sviluppando rapidamente una personalizzazione richiesta per far fronte alle richieste in tempo reale dei clienti e per rendere i costi di produzione più bassi. In questa attività di ricerca sono state studiate diverse tecniche AM per produrre i componenti funzionali desiderati, come la più comune, ovvero il Fused Deposition Modeling (FDM) e quella più innovativa e recente, ovvero la Projection Micro-Stereolithography (PSL), opportunamente combinati con rivestimenti nanostrutturati. In dettaglio, diversi componenti funzionali che richiedono caratteristiche e funzionalità precise nel campo della microfluidica, dei sensori e del settore biomedicale sono stati progettati, fabbricatiti e completamente caratterizzati con l'obiettivo di valutare i requisiti desiderati per ciascuno di essi. Più in dettaglio, nel primo caso di studio, la tecnica di stampa 3D PSL è stata sfruttata per realizzare un dispositivo micro-optofluidico che deve possedere diverse funzionalità come trasparenza ottica, tolleranze dimensionali, assenza di perdite di fluido e proprietà chimiche della superficie adeguate. Successivamente, nel secondo caso di studio, sono stati sviluppati sensori di risonanza plasmonica di superficie che mostrano elevate prestazioni sfruttando la tecnica di stampa 3D a getto d'inchiostro opportunamente combinata con strategie di funzionalizzazione superficiale. In questo caso siamo stati in grado di aggiungere alla trasparenza ottica due funzioni richieste: la capacità di innescare il fenomeno della risonanza plasmonica di superficie insieme al monitoraggio dei parametri: indice di rifrazione temperatura. Nel terzo caso studio è stata fabbricata una prova di fattibilità per la produzione di una protesi di arto inferiore personalizzata, leggera e con elementi funzionali incorporati, come i sensori. In quest'ultimo caso studio, abbiamo cercato di espandere le lezioni apprese su un'applicazione in macroscala. In questo caso, sono state affrontate anche le funzioni di riciclo e di facile disassemblaggio utilizzando alcune nuove resine epossidiche riciclabili. L'uso di queste resine è interessante in quanto potrebbe aprire la strada ad assemblaggi complessi consentendo il recupero di preziosi sensori alla fine della vita dell'assieme. Alla fine, sono stati sviluppati scaffold funzionali con proprietà anti-biofilm. Va sottolineato che si è deciso di effettuare le prime prove su fibre elettrofilate di polietersulfone (PES) e, successivamente, di estendere l'approccio agli scaffold di polietere etere chetone (PEEK) stampati in 3D. Questa strategia è stata scelta perché i veli elettrofilati in PES sono adatti come scaffold 3D perchè imitano molto bene la matrice extracellulare (ECM), la loro produzione è meno costosa di quella degli scaffold stampati in 3D in polietere etere chetone (PEEK), ed è stato conveniente e veloce eseguire i test antibatterici sui veli elettrofilati. Mentre, poi, l'utilizzo dell'approccio AM ha permesso di sviluppare scaffold con un controllo combinato su mesoscala, ottenuto utilizzando la tecnica FDM, e nanoscala mediante la crescita degli ossidi funzionali. Al contrario, utilizzando gli scaffold elettrofilati il controllo sulla mesoscala non è realizzabile.
MANIFATTURA ADDITIVA FUNZIONALE USANDO RIVESTIMENTI NANOSTRUTTURATI ED ELETTROSPINNING
SAITTA, LORENA
2022
Abstract
This work of thesis is the summary of three years of PhD activities during which several case studies have been investigated, within the field of the multi-functional Additive Manufacturing, by exploiting different 3D printing techniques. It is a research field that aims to investigate processes capable of combining several kinds of different materials within a component, such that the resulting component itself has a higher degree of functionality than would normally be found in an originally part produced through a certain manufacturing process. This approach, which relies on 3D printing as starting technique of fabrication, is justified by the fact that, in the modern industry panorama, it is more and more common the demands of practical applications that need complex structures, tailored objects and special functions. Within this context the Additive Manufacturing is wide spreading as innovative technique of production where it is necessary to redesign products with the aim to improve their performance, by quickly developing a required customization to cope with customers' real - time demands, and to make production cost more efficient. In this research activity many different AM techniques have been investigated to produce the desired functional components, such as the most common one, i.e., the Fused Deposition Modeling (FDM) and the most innovative and recent one, i.e. the Projection Micro-Stereolithography (PSL), properly combined with nanostructured coatings. In detail, several functional components requiring precise features and functionalities within the field of microfluidic, sensors and medical fields have been designed, manufactured and fully-characterized with the aim to assess the desired requirements for each of them. More in detail, in the first case study, the PSL 3D printing technique was exploited to realize a micro-optofluidic devices which must address different functionalities such as, optical transparency, dimensional tolerances, no fluid leakage and a suitable surface's chemistry. Next, in the second case study, surface plasmon resonance sensors showing high performance were developed by exploiting the inkjet 3D printing technique properly combined with tailoring strategies. In this case we were able to add to the optical transparency two required functions: ability to trigger the surface plasmonic resonance phenomenon together with refractive index and temperature monitoring. In the third case study a proof of concept for the manufacturing of a customized and lightweight lower - limb prostheses having built-in functional elements, such as sensors, was fabricated. In the latter case study, we tried to expand the lessons learned on a macroscale application. In this case, the functions of recycling and easy disassembling were also addressed by using some novel recyclable epoxy resins. The use of these resins is interesting as it might pave the way for complex assembly enabling the recovery of precious sensors at the end of life of the assembly. In the end, functional scaffolds having anti-biofilm properties have been developed. It must be highlighted that it was decided to carry out the first trials on Polyethersulfone (PES) electrospun fibers and then to extend the approach to 3D printed Polyether ether ketone (PEEK) scaffolds. This strategy was selected because the PES electrospun veils are suitable as 3D scaffolds for mimicking the extracellular matrix (ECM) very well, their production is less expensive than the 3D printed Polyether ether ketone (PEEK) one, and it was convenient and faster to carry out the antibacterial tests on electrospun veils. Whilst, next, using the AM approach allowed to develop scaffolds with a combined control on the mesoscale, achieved by using the FDM technique, and nanoscale by growing the functional oxides. Conversely, by using the electrospun scaffolds the control on the mesoscale is not achievable.File | Dimensione | Formato | |
---|---|---|---|
TESI_Lorena Saitta.pdf
accesso aperto
Dimensione
78.36 MB
Formato
Adobe PDF
|
78.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/73328
URN:NBN:IT:UNICT-73328