The discovery of pulsars has been revolutionary for astronomy and opened the possibility of performing extremely high precision timekeeping in our Galaxy. The pulsars, with their broadband lighthouse-like emission and stability of their rotation, have the perfect characteristics to probe the potential well and the gaseous environments around them. The dense globular clusters that surround the Galaxy are some of the most efficient factories of fast pulsars (known as millisecond pulsars) and are extremely fascinating objects to study. In their very centres they are thought to contain intermediate mass black holes (IMBHs), the missing links between the stellar black holes and the supermassive ones that inhabit the centres of galaxies, and the key to understanding the black hole population and evolution. Furthermore, the gas content and magnetic field of the globular clusters is able to probe the large scale magnetic field of the Galaxy, especially in the largely unknown Galactic halo. The presence of pulsars allows us to study the clusters with unprecedented precision. We can estimate the acceleration felt by the pulsar by measuring the derivative of the rotation period. This allows us to study the mass density profile of the cluster and look for deviations that might be caused by the presence of an IMBH. The effects of a central black hole are visible also in the derivatives of the acceleration that can be measured by timing the pulsar for long periods. The broadband nature of the pulsar emission enables the study of the ionized gas content and the magnetic field through the effects of dispersion and Faraday rotation. I apply these techniques to globular cluster 47 Tucanae that contains 25 known pulsars and measure the structural parameters of the cluster. I confirm the presence of ionized gas, test different distribution models, and discover, for the first time, a magnetic field in the cluster. No magnetic field has ever been proposed in a globular cluster, but the observations suggest that it is present and is about one order of magnitude stronger than what energy equipartition with the gas would imply. In this thesis I claim that the magnetic field is caused by an interaction of the cluster with a magnetized outflow from the Galactic disk that extends in the halo. Such an outflow has been previously proposed and here finds confirmation. No IMBH is found in 47 Tucanae with mass higher than 4000 Solar masses. However, the study of another cluster returned more exciting results. The globular cluster M62 has three known pulsars close to the centre which have accelerations that are not compatible with the published density profile. An excess of ~3900 Solar masses with a 68% confidence interval of (1200,6000) Solar masses is found in the central region. This excess has a very high mass to light ratio and could be due to an IMBH or a system of stellar mass black holes. Only with more observations and simulations tailored to this cluster, the IMBH can be confirmed. In my thesis I further explore the possibility of using the knowledge gained from the globular cluster pulsars to probe the formation history of the stellar cluster that surrounds the Galactic centre. One possible formation scenario points towards the tidal disruption of stellar clusters. Although no millisecond pulsars have been found in the region, using simulations, I show what the distribution of pulsars should be and where we should look to find them. The scientific discoveries possible with globular cluster pulsars are diverse and can extend out of the clusters into the entire Galaxy. The future of this field will be dominated by the next generation radio-telescopes like the new MeerKAT radio telescope in South Africa which promises to revolutionize our knowledge of pulsars. In the final chapter I describe this facility and what it will be able to achieve in the field of globular cluster pulsars.

La scoperta delle pulsar è stata rivoluzionaria per l’astronomia dando la possibilità di usare questi oggetti come orologi Galattici di alta precisione. Le pulsar emettono luce come un faro in una grande banda di frequenza e, grazie alla stabilità della loro rotazione, hanno le caratteristiche ideali per sondare il campo gravitazionale e il gas che le circondano. I densi ammassi globulari che circondano la Galassia sono tra i più prolifici luoghi di formazione delle pulsar veloci (conosciute come pulsar a millisecondo) e sono oggetti estremamente affascinanti. Nel loro centro si pensa contengano buchi neri di massa intermedia (IMBH), l’anello mancante tra i buchi neri stellari e quelli supermassicci che si trovano al centro delle galassie e la chiave per capire l’evoluzione buchi neri. Inoltre, grazie al gas ed al campo magnetico degli ammassi globulari si può campionare il campo magnetico a grande scala della Galassia, specialmente nell’alone galattico che è in gran parte sconosciuto. La presenza delle pulsar permette lo studio degli ammassi con una precisione senza precedenti. Possiamo calcolare l’accelerazione sentita dalla pulsar misurando la derivata del periodo rotazionale. Questo permette di analizzare il profilo di densità e di cercare deviazioni che potrebbero essere causate dalla presenza di un IMBH. Gli effetti di un buco nero centrale sono visibili anche nelle derivate dell’accelerazione che sono accessibili monitorando la pulsar per lunghi periodi. La grande banda di emissione delle pulsar permette l’analisi del contenuto di gas ionizzato e del campo magnetico tramite gli effetti della dispersione e della rotazione Faraday. In questa tesi ho applicato queste tecniche all’ammasso globulare 47 Tucanae che contiene 25 pulsar note per misurarne i parametri strutturali. Ho confermato la presenza di gas ionizzato trovando la migliore distribuzione spaziale e, per la prima volta, ho scoperto un campo magnetico nell’ammasso. Nessun campo magnetico era mai stato proposto in un ammasso globulare, ma le osservazioni confermano che è presente e che è circa un ordine di grandezza più forte di quanto si supporrebbe se fosse in equipartizione con il gas. Questo campo magnetico è originato dall’interazione dell’ammasso con un vento magnetizzato proveniente dal disco Galattico e che si propaga nell’alone. Questa analisi supporta la presenza di questo tipo di vento già introdotto in letteratura. L’ammasso globulare M62 ha tre pulsar vicino al centro le cui accelerazioni non sono compatibili con il profilo di densità. Nelle regioni centrali c’è un eccesso di massa di circa 3900 masse solari con un intervallo di confidenza al 68% di (1200,6000) masse solari. Questo eccesso ha un valore molto alto di rapporto massa-luminosità e potrebbe essere causato da un IMBH o da un sistema di buchi neri stellari. Per confermare la presenza di un IMBH sono necessarie ulteriori osservazioni e simulazioni specifiche. Nella mia tesi esploro inoltre la possibilità di usare quanto imparato dalle pulsar negli ammassi globulari per studiare la formazione dell’ammasso stellare che circonda il centro Galattico. Un possibile scenario di formazione propone come origine la distruzione mareale di ammassi stellari. Anche se nessuna pulsar a millisecondo è mai stata osservata in questa regione, ho mostrato, tramite simulazioni, quale dovrebbe essere la distribuzione delle pulsar e dove puntare per vederli. Le scoperte scientifiche possibili grazie alle pulsar negli ammassi globulari sono varie e possono riguardare l’intera Galassia. Il futuro di questo campo sarà dominato dai radio-telescopi di prossima generazione come il nuovo telescopio MeerKAT in Sudafrica. Questo strumento è descritto nel capitolo finale insieme con quello che sarà in grado di scoprire nel campo delle pulsar negli ammassi globulari.

Exploiting globular cluster pulsars as probes of their environment

ABBATE, FEDERICO
2020

Abstract

The discovery of pulsars has been revolutionary for astronomy and opened the possibility of performing extremely high precision timekeeping in our Galaxy. The pulsars, with their broadband lighthouse-like emission and stability of their rotation, have the perfect characteristics to probe the potential well and the gaseous environments around them. The dense globular clusters that surround the Galaxy are some of the most efficient factories of fast pulsars (known as millisecond pulsars) and are extremely fascinating objects to study. In their very centres they are thought to contain intermediate mass black holes (IMBHs), the missing links between the stellar black holes and the supermassive ones that inhabit the centres of galaxies, and the key to understanding the black hole population and evolution. Furthermore, the gas content and magnetic field of the globular clusters is able to probe the large scale magnetic field of the Galaxy, especially in the largely unknown Galactic halo. The presence of pulsars allows us to study the clusters with unprecedented precision. We can estimate the acceleration felt by the pulsar by measuring the derivative of the rotation period. This allows us to study the mass density profile of the cluster and look for deviations that might be caused by the presence of an IMBH. The effects of a central black hole are visible also in the derivatives of the acceleration that can be measured by timing the pulsar for long periods. The broadband nature of the pulsar emission enables the study of the ionized gas content and the magnetic field through the effects of dispersion and Faraday rotation. I apply these techniques to globular cluster 47 Tucanae that contains 25 known pulsars and measure the structural parameters of the cluster. I confirm the presence of ionized gas, test different distribution models, and discover, for the first time, a magnetic field in the cluster. No magnetic field has ever been proposed in a globular cluster, but the observations suggest that it is present and is about one order of magnitude stronger than what energy equipartition with the gas would imply. In this thesis I claim that the magnetic field is caused by an interaction of the cluster with a magnetized outflow from the Galactic disk that extends in the halo. Such an outflow has been previously proposed and here finds confirmation. No IMBH is found in 47 Tucanae with mass higher than 4000 Solar masses. However, the study of another cluster returned more exciting results. The globular cluster M62 has three known pulsars close to the centre which have accelerations that are not compatible with the published density profile. An excess of ~3900 Solar masses with a 68% confidence interval of (1200,6000) Solar masses is found in the central region. This excess has a very high mass to light ratio and could be due to an IMBH or a system of stellar mass black holes. Only with more observations and simulations tailored to this cluster, the IMBH can be confirmed. In my thesis I further explore the possibility of using the knowledge gained from the globular cluster pulsars to probe the formation history of the stellar cluster that surrounds the Galactic centre. One possible formation scenario points towards the tidal disruption of stellar clusters. Although no millisecond pulsars have been found in the region, using simulations, I show what the distribution of pulsars should be and where we should look to find them. The scientific discoveries possible with globular cluster pulsars are diverse and can extend out of the clusters into the entire Galaxy. The future of this field will be dominated by the next generation radio-telescopes like the new MeerKAT radio telescope in South Africa which promises to revolutionize our knowledge of pulsars. In the final chapter I describe this facility and what it will be able to achieve in the field of globular cluster pulsars.
4-feb-2020
Inglese
La scoperta delle pulsar è stata rivoluzionaria per l’astronomia dando la possibilità di usare questi oggetti come orologi Galattici di alta precisione. Le pulsar emettono luce come un faro in una grande banda di frequenza e, grazie alla stabilità della loro rotazione, hanno le caratteristiche ideali per sondare il campo gravitazionale e il gas che le circondano. I densi ammassi globulari che circondano la Galassia sono tra i più prolifici luoghi di formazione delle pulsar veloci (conosciute come pulsar a millisecondo) e sono oggetti estremamente affascinanti. Nel loro centro si pensa contengano buchi neri di massa intermedia (IMBH), l’anello mancante tra i buchi neri stellari e quelli supermassicci che si trovano al centro delle galassie e la chiave per capire l’evoluzione buchi neri. Inoltre, grazie al gas ed al campo magnetico degli ammassi globulari si può campionare il campo magnetico a grande scala della Galassia, specialmente nell’alone galattico che è in gran parte sconosciuto. La presenza delle pulsar permette lo studio degli ammassi con una precisione senza precedenti. Possiamo calcolare l’accelerazione sentita dalla pulsar misurando la derivata del periodo rotazionale. Questo permette di analizzare il profilo di densità e di cercare deviazioni che potrebbero essere causate dalla presenza di un IMBH. Gli effetti di un buco nero centrale sono visibili anche nelle derivate dell’accelerazione che sono accessibili monitorando la pulsar per lunghi periodi. La grande banda di emissione delle pulsar permette l’analisi del contenuto di gas ionizzato e del campo magnetico tramite gli effetti della dispersione e della rotazione Faraday. In questa tesi ho applicato queste tecniche all’ammasso globulare 47 Tucanae che contiene 25 pulsar note per misurarne i parametri strutturali. Ho confermato la presenza di gas ionizzato trovando la migliore distribuzione spaziale e, per la prima volta, ho scoperto un campo magnetico nell’ammasso. Nessun campo magnetico era mai stato proposto in un ammasso globulare, ma le osservazioni confermano che è presente e che è circa un ordine di grandezza più forte di quanto si supporrebbe se fosse in equipartizione con il gas. Questo campo magnetico è originato dall’interazione dell’ammasso con un vento magnetizzato proveniente dal disco Galattico e che si propaga nell’alone. Questa analisi supporta la presenza di questo tipo di vento già introdotto in letteratura. L’ammasso globulare M62 ha tre pulsar vicino al centro le cui accelerazioni non sono compatibili con il profilo di densità. Nelle regioni centrali c’è un eccesso di massa di circa 3900 masse solari con un intervallo di confidenza al 68% di (1200,6000) masse solari. Questo eccesso ha un valore molto alto di rapporto massa-luminosità e potrebbe essere causato da un IMBH o da un sistema di buchi neri stellari. Per confermare la presenza di un IMBH sono necessarie ulteriori osservazioni e simulazioni specifiche. Nella mia tesi esploro inoltre la possibilità di usare quanto imparato dalle pulsar negli ammassi globulari per studiare la formazione dell’ammasso stellare che circonda il centro Galattico. Un possibile scenario di formazione propone come origine la distruzione mareale di ammassi stellari. Anche se nessuna pulsar a millisecondo è mai stata osservata in questa regione, ho mostrato, tramite simulazioni, quale dovrebbe essere la distribuzione delle pulsar e dove puntare per vederli. Le scoperte scientifiche possibili grazie alle pulsar negli ammassi globulari sono varie e possono riguardare l’intera Galassia. Il futuro di questo campo sarà dominato dai radio-telescopi di prossima generazione come il nuovo telescopio MeerKAT in Sudafrica. Questo strumento è descritto nel capitolo finale insieme con quello che sarà in grado di scoprire nel campo delle pulsar negli ammassi globulari.
Pulsar; Ammassi globulari; Campi magnetici; buchi neri; Centro Galattico
COLPI, MONICA
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_746959.pdf

accesso aperto

Dimensione 12.99 MB
Formato Adobe PDF
12.99 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/73506
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-73506