This thesis presents a study of the composition of sand from desert dunes and adjacent rivers across the African continent to illustrate the effects of the interplay between fluvial and aeolian processes on sediment transport in desertic environments. The Sahara, Kalahari and Zambezi samples were analyzed by bulk-petrography, heavy-mineral, and detrital-zircon U–Pb geochronology. For the Zambezi case study, elemental geochemistry, Nd isotopes and clay minerals were also analyzed. Saharan dune fields are generally composed of pure quartzose sand with very poor heavy-mineral suites dominated by ultrastable minerals. Relatively varied compositions characterize sand along the Nile Valley, the southern front of the Anti-Atlas belt and near a basaltic field in Libya. Kalahari dune sand mostly consists of monocrystalline quartz associated with durable heavy. Composition varies only at the western and eastern edges of the desert, reflecting partly first-cycle fluvial supply eroded from crystalline basements of Cambrian to Archean age in central Namibia and western Zimbabwe. Basaltic detritus from Jurassic Karoo lavas is dominant in dunes near Victoria Falls. The segmented morphology of Zambezi River is reflected by its mineralogy and geochemistry. Pure quartzose sand recycled from Kalahari Desert dunes in the uppermost tract is next progressively enriched in basaltic rock fragments and clinopyroxene. Sediment load is renewed first downstream of Lake Kariba, documenting a stepwise decrease in quartz and durable heavy minerals. Composition becomes quartzo-feldspathic in the lower tract. Feldspar abundance in Lower Zambezi sand has no equivalent among big rivers on Earth and far exceeds that in sediments of the northern delta, shelf, and slope, revealing that provenance signals from the upper reaches have ceased to be transmitted across the routing system after closure of the big dams. Irumide ages predominate over Pan-African, Eburnean, and Neoarchean ages. Smectite, dominant in mud generated from Karoo basalts or in the equatorial climate of the Mozambican lowlands, prevails over illite and kaolinite. Elemental geochemistry reflects quartz addition by recycling, supply from Karoo basalts, and first-cycle provenance from Precambrian basements. Sahara and Kalahari case studies allow to study in situ sand generation by wind erosion versus external fluvial supply in arid environment. In the Sahara, most sand appears to be recycled from rocks with high sand-generation potential, and the main transport mechanism is the wind saltation and dune movement. In Kalahari, sediments are fed by rivers by first cycle erosion of exposed orogens at the flanks of the desert and therein homogenised. The contrasting effect of strong recycling by wind and fresh supply from rivers are the key factor for most deserts studied in literature and their identification in terms of mineralogy and provenance is proved to be precious for present and past climatic debate. In addition, evaluating the results from the Kalahari and Zambezi studies allows to critically reconsider several dogmas, such as the supposed increase of mineralogical “maturity” during long-distance fluvial transport. This is strongly affected by provenance factors: quartz-rich recycled Kalahari dune sand is progressively diluted along the Zambezi River by sediment supplied by different crustal domains. Inheritance of the “Kalahari paleo-weathering signal” by Zambezi River is highlighted also by geochemical indexes and mud composition which appear to be oddly more affected by weathering in the arid Uppermost Zambezi catchment than in the wetter Middle and Lower Zambezi.
Questa tesi presenta lo studio della composizione delle sabbie dei più grandi deserti africani e dei fiumi limitrofi al fine di illustrare gli effetti dell'interazione tra processi fluviali ed eolici sul trasporto di sedimenti in ambiente arido. Le sabbie del Sahara, del Kalahari e dello Zambesi sono state analizzate mediante petrografia, mineralogia della frazione pesante e geocronologia U-Pb di zirconi detritici. Per il caso di studio dello Zambesi sono stati analizzati anche la geochimica elementare, gli isotopi del Nd e i minerali delle argille. I campi di dune del Sahara sono, con poche eccezioni, composti da pura sabbia quarzosa con suite di minerali pesanti molto impoverite, dominate da minerali ultrastabili. La composizione varia solamente lungo la Valle del Nilo, in prossimità della catena dell'Anti-Atlante e alla provincia vulcanica libica. La sabbia delle dune del Kalahari è costituita principalmente da quarzo associato a minerali pesanti ultrastabili. La composizione varia solo ai margini occidentali e orientali del deserto, riflettendo in parte l’apporto fluviale di primo ciclo dai basamenti cristallini nella Namibia centrale, nello Zimbabwe occidentale e nelle dune vicino alle cascate Vittoria dove i sedimenti sono erosi dalle lave del Karoo. La morfologia segmentata del fiume Zambesi si riflette nella sua mineralogia e geochimica. La sabbia quarzosa erosa dalle dune del deserto del Kalahari viene progressivamente arricchita in frammenti litici basaltici e clinopirosseno. Successivamente nuovo apporto di sedimenti avviene a valle del lago Kariba, documentando una graduale diminuzione del quarzo e dei minerali ultrastabili. La composizione diventa quarzo-feldspatica nel tratto finale. L'abbondanza di feldspato nella sabbia del basso Zambesi non ha equivalenti tra i grandi fiumi sulla Terra e supera di gran lunga quella nei sedimenti del delta e della piattaforma, rivelando che il segnale di provenienza dell’alto Zambezi ha cessato di essere propagato a valle dopo la chiusura delle grandi dighe. La smectite, dominante nei fanghi generati dai basalti del Karoo o nel clima equatoriale delle pianure mozambicane, prevale su illite e kaolinite. La geochimica indica: l'aggiunta di quarzo per riciclo; l'erosione dei basalti del Karoo; l’erosione dei basamenti precambriani. Lo studio di Sahara e Kalahari consente di mettere a confronto deserti dominati dai processi eolici e deserti caratterizzati da una consistente interazione fluvio-eolica. Nel Sahara, la maggior parte della sabbia sembra essere riciclata da arenarie quarzose e il principale meccanismo erosivo e di trasporto è il vento. Nel Kalahari, i sedimenti sono trasportati dai fiumi che, erodendo gli orogeni ai fianchi del deserto, accumulano e omogeneizzano il detrito al centro del bacino grazie all’azione eolica. Lo studio permette di riconsiderare criticamente diversi dogmi della sedimentologia, come il presunto aumento della “maturità” mineralogica durante il trasporto fluviale: i sedimenti dell’alto Zambezi, erosi dalle dune del Kalahari e ricchi di quarzo, vengono progressivamente diluiti da sedimenti lito-feldspatici lungo il corso del fiume. Gli indici geochimici e la composizione dei fanghi sembrano indicare maggiore alterazione chimica nell'arido bacino dell’alto Zambesi rispetto al più umido Zambesi centrale e inferiore, testimoniando che il segnale di “paleo-alterazione del Kalahari” registrato nei sedimenti delle dune viene trasportato a valle fino alla foce.
Sand provenance and dispersal in the Sahara and Kalahari deserts: fluvial aeolian interactions and climatic implications.
PASTORE, GUIDO
2023
Abstract
This thesis presents a study of the composition of sand from desert dunes and adjacent rivers across the African continent to illustrate the effects of the interplay between fluvial and aeolian processes on sediment transport in desertic environments. The Sahara, Kalahari and Zambezi samples were analyzed by bulk-petrography, heavy-mineral, and detrital-zircon U–Pb geochronology. For the Zambezi case study, elemental geochemistry, Nd isotopes and clay minerals were also analyzed. Saharan dune fields are generally composed of pure quartzose sand with very poor heavy-mineral suites dominated by ultrastable minerals. Relatively varied compositions characterize sand along the Nile Valley, the southern front of the Anti-Atlas belt and near a basaltic field in Libya. Kalahari dune sand mostly consists of monocrystalline quartz associated with durable heavy. Composition varies only at the western and eastern edges of the desert, reflecting partly first-cycle fluvial supply eroded from crystalline basements of Cambrian to Archean age in central Namibia and western Zimbabwe. Basaltic detritus from Jurassic Karoo lavas is dominant in dunes near Victoria Falls. The segmented morphology of Zambezi River is reflected by its mineralogy and geochemistry. Pure quartzose sand recycled from Kalahari Desert dunes in the uppermost tract is next progressively enriched in basaltic rock fragments and clinopyroxene. Sediment load is renewed first downstream of Lake Kariba, documenting a stepwise decrease in quartz and durable heavy minerals. Composition becomes quartzo-feldspathic in the lower tract. Feldspar abundance in Lower Zambezi sand has no equivalent among big rivers on Earth and far exceeds that in sediments of the northern delta, shelf, and slope, revealing that provenance signals from the upper reaches have ceased to be transmitted across the routing system after closure of the big dams. Irumide ages predominate over Pan-African, Eburnean, and Neoarchean ages. Smectite, dominant in mud generated from Karoo basalts or in the equatorial climate of the Mozambican lowlands, prevails over illite and kaolinite. Elemental geochemistry reflects quartz addition by recycling, supply from Karoo basalts, and first-cycle provenance from Precambrian basements. Sahara and Kalahari case studies allow to study in situ sand generation by wind erosion versus external fluvial supply in arid environment. In the Sahara, most sand appears to be recycled from rocks with high sand-generation potential, and the main transport mechanism is the wind saltation and dune movement. In Kalahari, sediments are fed by rivers by first cycle erosion of exposed orogens at the flanks of the desert and therein homogenised. The contrasting effect of strong recycling by wind and fresh supply from rivers are the key factor for most deserts studied in literature and their identification in terms of mineralogy and provenance is proved to be precious for present and past climatic debate. In addition, evaluating the results from the Kalahari and Zambezi studies allows to critically reconsider several dogmas, such as the supposed increase of mineralogical “maturity” during long-distance fluvial transport. This is strongly affected by provenance factors: quartz-rich recycled Kalahari dune sand is progressively diluted along the Zambezi River by sediment supplied by different crustal domains. Inheritance of the “Kalahari paleo-weathering signal” by Zambezi River is highlighted also by geochemical indexes and mud composition which appear to be oddly more affected by weathering in the arid Uppermost Zambezi catchment than in the wetter Middle and Lower Zambezi.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_769265.pdf
accesso aperto
Dimensione
8.68 MB
Formato
Adobe PDF
|
8.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/73703
URN:NBN:IT:UNIMIB-73703