Gamma rays are the most penetrating electromagnetic waves and are extraordinary probes for investigating cosmic and terrestrial sources of radioactivity. During my PhD course I studied the application of gamma-ray spectroscopy in situ, in laboratory and airborne for exploring terrestrial environment, focusing on the calibration techniques and uncertainties treatment. The contents of this thesis are included in 5 publications, 4 already published and 1 submitted to scientific peer-reviewed journal. I presented the result of this studies to A.S.I.T.A. (Federazione delle Associazioni Scientifiche per le Informazioni Territoriali e Ambientali) National Conference in Cagliari and at 103st National Congress of the Italian Physical Society (Trento). Airborne Gamma-Ray Spectroscopy (AGRS) is a very effective technique for measuring 40K, 214Bi (eU) and 208Tl (eTh) terrestrial radioisotopes. Since these measurements are acquired dynamically with low cont rates, the study of statistical and systematic uncertainties is the mandatory task which I took care. In particular the severe backgrounds, variable in time and space, constituted by aircraft materials, cosmic rays and atmospheric radon is a challenge for the entire research branch. Some off-shore calibration flights at different altitudes have been made using 4L of NaI(Tl) crystals. Thanks to a refined statistical analysis it has being to be possible to split and quantify the contributions originating from cosmic rays, aircraft and atmospheric 222Rn from the count rate in the 214Bi energy window. The integration of data from four low-cost GNSS receivers, one Inertial Measurement Unit, one radar altimeter and two barometric sensors mounted on the aircraft allowed me to evaluate the flight uncertainty and his implications on the radionuclide ground abundances reconstructions. My experience in data analysis with AGRS surveys has been useful for enhance the performance of ZaNaI, a portable gamma-ray spectrometer designed for accurate and quick in situ measurements. In particular I analyzed the data collected during an extensive radiometric survey in Northeastern Sardinia. On the base of 167 HPGe measurements and 368 NaI measurements the spatial variability of eU abundance has being modeled using the Kriging with Variance of Measurement Error method, a geostatistical tool that assigns different levels of confidence to the data acquired with the two gamma-ray detectors. It is one of the most successful result of this survey and it allowed to realize the map of the eU abundance distribution of Northeastern Sardinia, together with together with the uncertainties of the estimations. With this portable gamma-ray spectrometer I had the opportunity to design a laboratory experience with the aim to explain the fundamentals of the in-situ radioactivity measurement during the Summer School in Nuclear Physics and Technologies in Ferrara. The simplicity of use through Android applications, make ZaNaI an excellent instrument for educational purposes. The acquisitions performed by the students during the outdoor survey are used to create a map of the radioactivity of the Scientific and Technology Campus of University of Ferrara. An amazing application of in-situ gamma ray detection has being done in the field of precision agriculture. Since the water mass attenuation coefficient is ~ 11 % higher than those of the typical minerals commonly present in the soil, a gamma spectroscopy measurement is extremely sensitive to the variation of moisture in the pores. With the aim of measuring the water content in the first ~ 20 centimeters of an area of 0.2 ha, a permanent gamma station equipped 1L NaI(Tl) detector were placed in a tomato crop field. The challenges of these measures is estimate the shielding effect induced by the vegetation growing. Monte Carlo calibration allowed me to tackle this problem successfully: the water content estimated with gamma method are compatible at 1σ level.
I raggi gamma sono le onde elettromagnetiche più penetranti e possono rivelarsi sonde straordinarie per studiare le sorgenti di radioattività di origine cosmica e terrestre. Durante il mio corso di dottorato mi sono occupato di spettroscopia gamma in situ, in laboratorio e airbone concentrandomi sulle tecniche di calibrazione e sul trattamento delle incertezze. I contenuti di questa tesi sono inclusi in cinque articoli, quattro già pubblicati e uno sottoposto ad una rivista peer reviewed. Ho avuto l’opportunità di presentare i risultati delle mie ricerche alla conferenza nazionale A.S.I.T.A. (Federazione delle Associazioni Scientifiche per le Informazioni Territoriali e Ambientali) a Cagliari ed al 103° Congresso Nazionale della Società Fisica Italiana (Trento). La Spettroscopia Gamma Airborne (AGRS) è una tecnica molto efficace per misurare le abbondanze di 40K, 214Bi (eU) e 208Tl (eTh) presenti naturalmente nell'ambiente terrestre. Essa richiede un raffinato studio delle incertezze statistiche e sistematiche. In particolare è indispensabile tener conto della variazione nel tempo e nello spazio delle radiazioni originate dalle sorgenti di background. A tale scopo, sono stati effettuati voli di calibrazione sul mare a diverse altitudini utilizzando uno spettrometro costituito da quattro cristalli da 4L di NaI (Tl). Grazie ad una raffinata analisi statistica è stato possibile suddividere e quantificare il contributo originato dai raggi cosmici, dal velivolo e dal radon atmosferico (222Rn). L'integrazione di dati provenienti dai ricevitori GNNS, IMU, dall’altimetro radar e dai sensori di pressione e temperatura installati sul velivolo mi ha permesso di valutare l'incertezza sulla quota di volo e le sue implicazioni sulla ricostruzione delle abbondanze dei radionuclidi a terra. L’esperienza che ho maturato nell’analisi dei dati AGRS mi ha permesso di migliorare le prestazioni dello strumento ZaNaI, uno spettrometro gamma per misurazioni in-situ trasportabile in uno zaino. In particolare ho analizzato i dati acquisiti durante un’indagine radiometrica nel nordest della Sardegna. Le misure di spettroscopia gamma e le informazioni geologiche dell’area hanno permesso di realizzare una mappa della distribuzione dell'abbondanza eU nel nordest della Sardegna grazie ad un'analisi geostatitisca multivariata. ZaNaI ha avuto un ruolo centrale nei laboratori didattici tenutisi in occasione della Summer School in Fisica e Tecnologie Nucleari a Ferrara. Durante le attività pratiche che ho progettato, si è dimostrato un eccellente strumento educativo grazie alla sua semplicità di gestione attraverso un’applicazione Android. Le acquisizioni effettuate dagli studenti durante il survey all’aperto hanno permesso di realizzare una mappa della radioattività naturale del Campus del Polo Scientifico e Tecnologico dell’Università di Ferrara. Un’ulteriore applicazione della spettroscopia gamma in situ è stata effettuata nell’ambito dell’agricoltura di precisone. Poiché le misure di spettroscopia gamma sono estremamente sensibili alla variazione dell'umidità nei pori del suolo, con lo scopo di misurare il contenuto di acqua nelle prime decine di centimetri di un'area di 0.2 ha, è stata progettata e realizzata una stazione gamma dotata di un rilevatore di NaI (Tl) da 1L. La stazione è stata collocata in una stazione agricola sperimentale coltivata a pomodori e affiancata da una stazione agrometeorologica. Questa ricerca ha dimostrato che la spettroscopia gamma può fornire, grazie ad una raffinata calibrazione Monte Carlo, una stima affidabile del contenuto volumetrico di acqua nel suolo in diverse fasi di crescita della vegetazione. I risultati ottenuti dalle misure AGRS e airborne confermano che la spettroscopia gamma è un metodo eccellente per esplorare l'ambiente.
La radiazione gamma: una sonda per esplorare l'ambiente terrestre
ALBERI, Matteo
2018
Abstract
Gamma rays are the most penetrating electromagnetic waves and are extraordinary probes for investigating cosmic and terrestrial sources of radioactivity. During my PhD course I studied the application of gamma-ray spectroscopy in situ, in laboratory and airborne for exploring terrestrial environment, focusing on the calibration techniques and uncertainties treatment. The contents of this thesis are included in 5 publications, 4 already published and 1 submitted to scientific peer-reviewed journal. I presented the result of this studies to A.S.I.T.A. (Federazione delle Associazioni Scientifiche per le Informazioni Territoriali e Ambientali) National Conference in Cagliari and at 103st National Congress of the Italian Physical Society (Trento). Airborne Gamma-Ray Spectroscopy (AGRS) is a very effective technique for measuring 40K, 214Bi (eU) and 208Tl (eTh) terrestrial radioisotopes. Since these measurements are acquired dynamically with low cont rates, the study of statistical and systematic uncertainties is the mandatory task which I took care. In particular the severe backgrounds, variable in time and space, constituted by aircraft materials, cosmic rays and atmospheric radon is a challenge for the entire research branch. Some off-shore calibration flights at different altitudes have been made using 4L of NaI(Tl) crystals. Thanks to a refined statistical analysis it has being to be possible to split and quantify the contributions originating from cosmic rays, aircraft and atmospheric 222Rn from the count rate in the 214Bi energy window. The integration of data from four low-cost GNSS receivers, one Inertial Measurement Unit, one radar altimeter and two barometric sensors mounted on the aircraft allowed me to evaluate the flight uncertainty and his implications on the radionuclide ground abundances reconstructions. My experience in data analysis with AGRS surveys has been useful for enhance the performance of ZaNaI, a portable gamma-ray spectrometer designed for accurate and quick in situ measurements. In particular I analyzed the data collected during an extensive radiometric survey in Northeastern Sardinia. On the base of 167 HPGe measurements and 368 NaI measurements the spatial variability of eU abundance has being modeled using the Kriging with Variance of Measurement Error method, a geostatistical tool that assigns different levels of confidence to the data acquired with the two gamma-ray detectors. It is one of the most successful result of this survey and it allowed to realize the map of the eU abundance distribution of Northeastern Sardinia, together with together with the uncertainties of the estimations. With this portable gamma-ray spectrometer I had the opportunity to design a laboratory experience with the aim to explain the fundamentals of the in-situ radioactivity measurement during the Summer School in Nuclear Physics and Technologies in Ferrara. The simplicity of use through Android applications, make ZaNaI an excellent instrument for educational purposes. The acquisitions performed by the students during the outdoor survey are used to create a map of the radioactivity of the Scientific and Technology Campus of University of Ferrara. An amazing application of in-situ gamma ray detection has being done in the field of precision agriculture. Since the water mass attenuation coefficient is ~ 11 % higher than those of the typical minerals commonly present in the soil, a gamma spectroscopy measurement is extremely sensitive to the variation of moisture in the pores. With the aim of measuring the water content in the first ~ 20 centimeters of an area of 0.2 ha, a permanent gamma station equipped 1L NaI(Tl) detector were placed in a tomato crop field. The challenges of these measures is estimate the shielding effect induced by the vegetation growing. Monte Carlo calibration allowed me to tackle this problem successfully: the water content estimated with gamma method are compatible at 1σ level.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Matteo_Alberi.pdf
accesso aperto
Dimensione
38.2 MB
Formato
Adobe PDF
|
38.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/74462
URN:NBN:IT:UNIFE-74462