A campaign of geochemical measures was carried out in the summit area of Mt Etna during 2019-2021 in order to study both high- and low-temperature fumaroles and the geometry of diffuse degassing areas there present. The aims were: i) to improve our knowledge about the geochemical characteristics of non-plume degassing; ii) to define the extension of the shallow hydrothermal system around the summit craters of the volcano; iii) to assess all possible interactions between the shallow hydrothermal system and deeper melt through which the gas flux takes place; iv) to monitor the temporal evolution of the gas emissions, trying to discriminate between shallow-related variations and those related to deeper contributions of magmatic fluids. The study was conducted through: i) gas sampling of high temperature fumaroles within a fracture on North-East Crater (NEC) and along the crater rim of Voragine (VOR); ii) measurements of soil CO2 flux, soil heat flux and thermal conductivity on the summit area, particularly along the rims of Central Crater (Bocca Nuova [BN] and VOR) and NEC, and also along the flanks of the summit cone; iii) installation of a permanent station for continuous monitoring of the concentrations of CO2, CH4, H2 in a steaming fumarole (T° of about 90 °C) inside the uppermost crater formed during the 2002 flank eruption, on the upper north side of the volcano. This site has continuously produced gaseous emissions even after the end of the 2002 eruption and the gas emission has been found to be directly linked to the degassing of the central conduit of the volcano. For this reason, this site has an important place for monitoring the gaseous emissions directly linked with the summit area. This work shows the preliminary data acquired during the geochemical survey, summarised as follows: i) the diffuse CO2 flux combined with soil heat flux allowed identifying areas with a greater component from direct magmatic degassing. These areas are mostly located on the rims of the craters, but some isolated anomalous points were found in places where recent eruptive products have buried old volcano-tectonic fractures or old fumaroles; ii) the temporal evolution of the chemistry of gases from the 2002 crater shows different strong negative CO2 peaks. Most of these peaks are linked to the increase in volcanic activity on Etna, especially during 2021 when a series (over 50) of intense paroxysms occurred from the Southeast Crater. Several cyclic variations in the composition of gaseous species were also observed, with daily periods, as well as changes in the CO2/CH4 ratio that will deserve further studies in the follow-up of this research.
Il lavoro di dottorato si prefigge di effettuare uno studio geochimico del sistema idrotermale superficiale dell’area sommitale dell’Etna, ovvero relativo alla zona circum-craterica del cono terminale e alle fumarole di media-alta temperatura presenti nel bordo dei crateri sommitali, attraverso una caratterizzazione spaziale e temporale della composizione chimica ed isotopica dei gas fumarolici e attraverso la misura dei flussi di calore e di CO2 emessi in forma diffusa dal terreno nell’area craterica e in zone con caratteristiche analoghe ma più distali. Lo scopo del lavoro è di colmare alcune delle lacune presenti nella conoscenza delle caratteristiche chimico – fisiche del sistema vulcanico Etneo, quali una stima del bilancio di massa ed energia dei sistemi idrotermali esistenti nella zona sommitale del vulcano, la caratterizzazione chimica dei fluidi emessi dalle fumarole presenti in area craterica e non e sulle variazioni temporali ad alta frequenza della concentrazione di alcune specie gassose in emissioni fumaroliche più distali ma riconducibili al sistema di degassamento sommitale. Ciò consente di definire il potenziale del sistema idrotermale dell’Etna anche durante i periodi non eruttivi del vulcano e studiare le variazioni composizionali delle fumarole in relazione alle variazioni dell’attività vulcanica. Il lavoro viene svolto seguendo due approcci: un approccio spaziale, attraverso diverse campagne di misura ripetute nel tempo, con l’obiettivo di determinare i valori del flusso di CO2 diffuso dal suolo e del flusso di calore emesso dal suolo, attraverso i quali è possibile non solo definire l’estensione del sistema idrotermale sommitale, ma soprattutto effettuare un bilancio chimico ed energetico del sistema anche in condizioni non eruttive ed evidenziare le variazioni riscontrate nell’emissione dei fluidi gassosi a seguito di cambiamenti nello stato dell’attività vulcanica; un approccio temporale, mediante l’installazione di una stazione per l’acquisizione ad alta frequenza della concentrazione di alcune specie gassose. In questo modo è possibile da un lato dimostrare l’importanza di svolgere un campionamento in quasi-continuo dei gas fumarolici che, a differenza di quanto avviene nel caso del campionamento periodico, permette di non perdere importanti informazioni derivanti dal sistema vulcanico tra un campionamento e l’altro. Allo stesso modo consente di mettere in relazione la concentrazione dei fluidi gassosi e delle loro variazioni composizionali con altri parametri comunemente utilizzati nel monitoraggio vulcanico (tremore vulcanico, flusso di SO2 craterico) al fine di valutare come queste variano in relazione alle variazioni dell’attività vulcanica.
Studio del sistema idrotermale etneo mediante la caratterizzazione dei gas emessi dalle fumarole dei crateri sommitali.
DONATUCCI, ALESSIA
2023
Abstract
A campaign of geochemical measures was carried out in the summit area of Mt Etna during 2019-2021 in order to study both high- and low-temperature fumaroles and the geometry of diffuse degassing areas there present. The aims were: i) to improve our knowledge about the geochemical characteristics of non-plume degassing; ii) to define the extension of the shallow hydrothermal system around the summit craters of the volcano; iii) to assess all possible interactions between the shallow hydrothermal system and deeper melt through which the gas flux takes place; iv) to monitor the temporal evolution of the gas emissions, trying to discriminate between shallow-related variations and those related to deeper contributions of magmatic fluids. The study was conducted through: i) gas sampling of high temperature fumaroles within a fracture on North-East Crater (NEC) and along the crater rim of Voragine (VOR); ii) measurements of soil CO2 flux, soil heat flux and thermal conductivity on the summit area, particularly along the rims of Central Crater (Bocca Nuova [BN] and VOR) and NEC, and also along the flanks of the summit cone; iii) installation of a permanent station for continuous monitoring of the concentrations of CO2, CH4, H2 in a steaming fumarole (T° of about 90 °C) inside the uppermost crater formed during the 2002 flank eruption, on the upper north side of the volcano. This site has continuously produced gaseous emissions even after the end of the 2002 eruption and the gas emission has been found to be directly linked to the degassing of the central conduit of the volcano. For this reason, this site has an important place for monitoring the gaseous emissions directly linked with the summit area. This work shows the preliminary data acquired during the geochemical survey, summarised as follows: i) the diffuse CO2 flux combined with soil heat flux allowed identifying areas with a greater component from direct magmatic degassing. These areas are mostly located on the rims of the craters, but some isolated anomalous points were found in places where recent eruptive products have buried old volcano-tectonic fractures or old fumaroles; ii) the temporal evolution of the chemistry of gases from the 2002 crater shows different strong negative CO2 peaks. Most of these peaks are linked to the increase in volcanic activity on Etna, especially during 2021 when a series (over 50) of intense paroxysms occurred from the Southeast Crater. Several cyclic variations in the composition of gaseous species were also observed, with daily periods, as well as changes in the CO2/CH4 ratio that will deserve further studies in the follow-up of this research.File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato - DONATUCCI ALESSIA 20220829102214.pdf
accesso aperto
Dimensione
14.11 MB
Formato
Adobe PDF
|
14.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/75477
URN:NBN:IT:UNICT-75477