Rubber products are commonly employed in a wide variety of industries including tire manufacturing, packaging, engineering and construction. The mechanical performances of rubber itself are unsatisfactory for the desired applications so the necessary improvements are commonly obtained by vulcanization and addition of reinforcing fillers in the elastomeric matrix. The most popular reinforcing filler is carbon black whose use is however associated with health and environmental concerns. For this reason, many tire manufacturers are concentrating their efforts in replacing carbon black with more sustainable alternatives. Their ambitions include the increment of renewable materials and the simultaneous reduction of fossil-based compounds in tire formulations, while preserving pr improving mechanical performances. In this frame, the present research project dealt with the development of sustainable reinforcing fillers for rubber compounds in alternative to fossil-based technologies with a particular focus on lignin. Despite its availability at industrial scale, the structural complexity of lignin has hampered its conversion into value-added products and the rational design of functional materials. However, the concerns about toxicity and environmental concerns related to the use of fossil-based materials are eliciting investigations regarding the use of renewable resources, included lignin. This material could be considered as a valuable alternative to carbon black in rubber compounds due to its good physical chemical and mechanical properties, antioxidant activity and thermal stability. However, its combination with an elastomeric matrix requires overcoming the poor compatibility between the two materials related to the polarity of lignin which results into strong self-interactions. So, it was necessary to modify lignin in order to improve the number and quality of its interaction with rubber resulting in a reinforcing effect. To ensure the desired reinforcement, two strategies were explored in the present project. The former dealt with the functionalisation of lignin hydroxyl groups ensuring the formation of covalent bonds between lignin and the rubber matrix during vulcanization. The procedure consisted in the mechanochemical esterification of lignin, allowing running reactions in the solid state, taking advantage of mechanical energy to trigger chemical transformations, avoiding organic solvents, limiting work-up procedures and reducing wastes with respect to wet chemistry syntheses. The latter consisted in the formulation of lignin into nanoparticles (LNPs)which are acknowledged to exhibit unique properties due to their high surface to volume ratio. Analytical investigations about solvent-extracted fractions guided the choice of specific lignin fractions for the development of LNPs with peculiar features. The innovative procedure allowed valorising the whole starting kraft lignin in a material efficient manner. It was possible to produce LNPs which proved dimensionally stable in a broad pH range 4.5-12.0 where lignin normally aggregates or dissolves The same approach allowed preparing LNPs with a surface-specific covalent functionalisation, an achievement never attempted in literature, to the best of our knowledge. The setup and scaleup of those procedures allowed for the formulation of innovative rubber compounds followed by the assessment of their dynamic-mechanical properties. The intriguing results proved promising for the development of technologically valuable and competitive rubber compounds including renewable materials.
Manufatti in gomma trovano una gran varietà di impieghi tecnologicamente rilevanti. Le proprietà meccaniche della gomma di per sé non sono soddisfacenti per le applicazioni desiderate quindi i miglioramenti necessari sono comunemente ottenuti tramite vulcanizzazione e addizione di filler rinforzanti nella matrice elastomerica. Il filler rinforzante più comune è il nero fumo il cui uso è tuttavia associato a problemi per la salute e l’ambiente. Per questa ragione molti produttori di pneumatici stanno concentrando i propri sforzi per la sostituzione del nero fumo con alternative più sostenibili. Le loro ambizioni includono l’incremento di materiali rinnovabili e la simultanea riduzione di composti derivanti da carbonfossile nella formulazione di pneumatici, contemporaneamente preservando o migliorando le proprietà meccaniche. In questo contesto il presente progetto di ricerca si è concentrato sullo sviluppo di filler rinforzanti sostenibili per compositi elastomerici in alternativa alle tecnologie legate all’industria del petrolio, con una particolare attenzione alla lignina. Nonostante la sua disponibilità a livello industriale, la complessità strutturale della lignina ha impedito la sua conversione in prodotti ad alto valore aggiunto e la progettazione razionale di materiali funzionali. Questo materiale può essere considerato una valida alternativa al nerofumo nei compositi elastomerici per le sue proprietà chimico-fisiche, le proprietà meccaniche, l’attività antiossidante e la stabilità termica. La sua combinazione con una matrice elastomerica comporta la necessità di superare la scarsa compatibilità tra i due materiali associata alla polarità della lignina che dà luogo a forti interazioni con se stessa. È stato necessario modificare la lignina per migliorare il numero e la qualità delle sue interazioni con la gomma al fine di ottenere un rinforzo meccanico della stessa. Per assicurare il rinforzo desiderato si sono esplorate e due strategie. La prima si è focalizzata sulla funzionalizzazione dei gruppi ossidrili della lignina, puntando alla formazione di legami covalenti tra la lignina stessa e la matrice gommosa durante la vulcanizzazione. È stata messa a punto una procedura innovativa per l’esterificazione meccanochimica della lignina che ha consentito di eseguire la reazione allo stato solido, avvantaggiandosi dell’energia meccanica per indurre trasformazioni chimiche, evitando l’uso di solventi organici, limitando le procedure di workup e riducendo la produzione di rifiuti rispetto alle strategie di sintesi in soluzione. Il secondo approccio è consistito nella formulazione di nanoparticelle di lignina (LNP) che sono note esibire proprietà uniche a causa del loro alto rapporto tra area superficiale e volume. Studi analitici riguardo frazioni estratte con solventi organiche hanno guidato la scelta di specifiche frazione di lignina per lo sviluppo di nanoparticelle con caratteristiche peculiari. La procedura innovativa sviluppata ha permesso di valorizzare tutto la lignina kraft di partenza in maniera efficiente. È stato possibile produrre LNP con una provata stabilità dimensionale in un ampio intervallo di pH (4,5-12) , valori ai quali normalmente la lignina si aggrega o dissolve. Lo stesso approccio ha consentito di preparare LNP specificamente funzionalizzate in maniera covalente alla superficie, un risultato mai ottenuto in letteratura al meglio delle nostre conoscenze. La messa appunto e lo scale up di queste procedure hanno permesso la formulazione di compositi elastomerici, seguito dalla valutazione delle proprietà dinamomeccaniche di una varietà di compositi che includevano lignina modificata. I risultati intriganti si sono dimostrati promettenti per lo sviluppo di compositi elastomerici tecnologicamente competitivi contenenti materiali rinnovabili.
NEW FUNCTIONALIZATION APPROACHES OF LIGNOCELLULOSIC FEEDSTOCK TO OBTAIN NEW REINFORCING FILLERS TAILORED TO RUBBER COMPOUNDS
FERRUTI, FEDERICA MARIA CAMILLA
2023
Abstract
Rubber products are commonly employed in a wide variety of industries including tire manufacturing, packaging, engineering and construction. The mechanical performances of rubber itself are unsatisfactory for the desired applications so the necessary improvements are commonly obtained by vulcanization and addition of reinforcing fillers in the elastomeric matrix. The most popular reinforcing filler is carbon black whose use is however associated with health and environmental concerns. For this reason, many tire manufacturers are concentrating their efforts in replacing carbon black with more sustainable alternatives. Their ambitions include the increment of renewable materials and the simultaneous reduction of fossil-based compounds in tire formulations, while preserving pr improving mechanical performances. In this frame, the present research project dealt with the development of sustainable reinforcing fillers for rubber compounds in alternative to fossil-based technologies with a particular focus on lignin. Despite its availability at industrial scale, the structural complexity of lignin has hampered its conversion into value-added products and the rational design of functional materials. However, the concerns about toxicity and environmental concerns related to the use of fossil-based materials are eliciting investigations regarding the use of renewable resources, included lignin. This material could be considered as a valuable alternative to carbon black in rubber compounds due to its good physical chemical and mechanical properties, antioxidant activity and thermal stability. However, its combination with an elastomeric matrix requires overcoming the poor compatibility between the two materials related to the polarity of lignin which results into strong self-interactions. So, it was necessary to modify lignin in order to improve the number and quality of its interaction with rubber resulting in a reinforcing effect. To ensure the desired reinforcement, two strategies were explored in the present project. The former dealt with the functionalisation of lignin hydroxyl groups ensuring the formation of covalent bonds between lignin and the rubber matrix during vulcanization. The procedure consisted in the mechanochemical esterification of lignin, allowing running reactions in the solid state, taking advantage of mechanical energy to trigger chemical transformations, avoiding organic solvents, limiting work-up procedures and reducing wastes with respect to wet chemistry syntheses. The latter consisted in the formulation of lignin into nanoparticles (LNPs)which are acknowledged to exhibit unique properties due to their high surface to volume ratio. Analytical investigations about solvent-extracted fractions guided the choice of specific lignin fractions for the development of LNPs with peculiar features. The innovative procedure allowed valorising the whole starting kraft lignin in a material efficient manner. It was possible to produce LNPs which proved dimensionally stable in a broad pH range 4.5-12.0 where lignin normally aggregates or dissolves The same approach allowed preparing LNPs with a surface-specific covalent functionalisation, an achievement never attempted in literature, to the best of our knowledge. The setup and scaleup of those procedures allowed for the formulation of innovative rubber compounds followed by the assessment of their dynamic-mechanical properties. The intriguing results proved promising for the development of technologically valuable and competitive rubber compounds including renewable materials.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_860922.pdf
embargo fino al 14/02/2026
Dimensione
6.49 MB
Formato
Adobe PDF
|
6.49 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/76097
URN:NBN:IT:UNIMIB-76097