Long Living Individuals (LLIs) show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase (eNOS) activity, endothelial dysfunction and impairment of tissue repair following ischemic injury. In this thesis, I illustrate a genetic analysis of LLIs to reveal master molecular regulators of physiologic aging and new targets for treatment of cardiovascular disease. I show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in three independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation and activation by protein-kinase-R (PKR)-like endoplasmic reticulum kinase (PERK) induces its complexing with 14-3-3 and heat-shock-protein 90 (HSP90), which is facilitated by the longevity-associated variant (LAV-BPIFB4). In isolated vessels, BPIFB4 is up-regulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and as well as old mice, gene transfer of LAV-BPIFB4 restores eNOS signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34+ cells of LLIs, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with LAV-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. LAV-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes.
I soggetti longevi mostrano un ritardo nell’invecchiamento, fenomeno caratterizzato dalla progressiva perdita dell’omeostasi cardiovascolare, concomitante alla riduzione dell’attività dell’enzima ossido nitrico sintasi endoteliale (eNOS), alla disfunzione endoteliale e all’indebolimento dei sistemi di riparazione tissutale dopo danno ischemico. In questa tesi si mostra che il polimorfismo rs2070325 (Ile229Val) nel gene bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) è associato alla longevità in tre popolazioni indipendenti, con un modello genetico recessivo. Inoltre, l’espressione di BPIFB4 è coinvolta nel mantenimento dell’omeostasi cellulare e vascolare attraverso la regolazione della sintesi proteica. La fosforilazione e attivazione di BPIFB4 da parte della protein-kinase-R (PKR)-like endoplasmic reticulum kinase (PERK) induce il suo legame con 14-3-3 e heat-shock-protein 90 (HSP90); questo fenomeno è facilitato per la variante associata alla longevità (LAV-BPIFB4). In vasi ex vivo, BPIFB4 è up-regolato dallo stress meccanico e il suo silenziamento inibisce la vasodilatazione endotelio-dipendente. Per di più, sia in ratti ipertesi che in modelli murini di senescenza, l’espressione di LAV-BPIFB4, indotta tramite infezione adenovirale, ripristina il signaling molecolare di eNOS, corregge la disfunzione endoteliale e riduce i livelli della pressione sanguigna. Inoltre, BPIFB4 è implicata nella riparazione dei danni vascolari. BPIFB4 è espressa nelle cellule CD34+ dei soggetti longevi e il suo silenziamento nei progenitori endoteliali preclude la loro capacità di migrare verso il chemioattrattante SDF-1. Infine, in un modello murino di ischemia periferica, il trattamento di terapia genica con LAV-BPIFB4 a livello sistemico promuove il reclutamento delle cellule staminali ematopoietiche, la rivascolarizzazione riparativa e la riperfusione del muscolo ischemico. LAV-BPIFB4 può seriamente rappresentare uno strumento terapeutico per combattere la disfunzione endoteliale e promuovere processi di riparazione vascolare.
Identification and characterization of a BPIFB4 functional variant associated with human exceptional longevity.
VILLA, FRANCESCO
2015
Abstract
Long Living Individuals (LLIs) show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase (eNOS) activity, endothelial dysfunction and impairment of tissue repair following ischemic injury. In this thesis, I illustrate a genetic analysis of LLIs to reveal master molecular regulators of physiologic aging and new targets for treatment of cardiovascular disease. I show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in three independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation and activation by protein-kinase-R (PKR)-like endoplasmic reticulum kinase (PERK) induces its complexing with 14-3-3 and heat-shock-protein 90 (HSP90), which is facilitated by the longevity-associated variant (LAV-BPIFB4). In isolated vessels, BPIFB4 is up-regulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and as well as old mice, gene transfer of LAV-BPIFB4 restores eNOS signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34+ cells of LLIs, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with LAV-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. LAV-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_038200.pdf
Open Access dal 01/12/2018
Dimensione
11.87 MB
Formato
Adobe PDF
|
11.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/76242
URN:NBN:IT:UNIMIB-76242