Among the first receptors activated during host-pathogen interactions are Toll-like receptors (TLRs), which detect pathogen-associated molecular patterns (PAMPs) to induce innate and adaptive immune responses. TLR4 is the mammalian sensor of bacterial endotoxin, lipopolysaccharide (LPS). Dysregulated TLR4 activation is involved in acute systemic sepsis and in many disorders that involve inflammation, including inflammatory bowel diseases (IBDs). Therefore, therapeutic modulation of TLR4 signalling is of major interest. This PhD thesis is based on three papers (Chapter 1-3) and has the aim to study the capacity of synthetic small molecule TLR4 antagonists, alone or in combination with antimicrobial peptides (AMPs), to act as therapeutics in inflammatory diseases. In Chapter I, starting from the assumption that opportunely designed cationic amphiphiles can behave as ligands of the LPS receptor system and therefore modulate the TLR4 signaling, we present the rational design and biological characterization of a panel of amphiphilic guanidinocalixarenes. The structure of these compounds was computationally designed and optimized to dock into MD-2 and CD14 binding sites. We found that some of these calixarenes were active in inhibiting, in a dose-dependent way, the LPS-stimulated TLR4 activation and TLR4-dependent cytokine production in human and mouse immune cells. Moreover, cationic guanidinocalixarenes also inhibited TLR4 signaling when TLR4 was activated by the plant lectin PHA. While the activity of guanidinocalixarenes in inhibiting LPS toxic action has previously been related to their capacity to bind and neutralize LPS, the results obtained in this chapter suggest a direct antagonist effect of calixarenes on TLR4/MD-2 dimerization: this suggests the use of the calixarene scaffold for the development of new TLR4-directed therapeutics. In Chapter II is presented the effect of co-administration of antimicrobial peptides (AMPs) and a synthetic TLR4 antagonist (the glycolipid FP7) on TLR4 activation and signalling. The co-administration of two LPS-neutralizing peptides (a cecropin A-melittin hybrid peptide and a human cathelicidin) enhances by an order of magnitude the potency of FP7 in blocking the TLR4 signal. Interestingly, this potentiation effect also occurs when cells are stimulated with a non-LPS TLR4 agonist. Our data suggest a dual mechanism of action for the peptide/glycolipid combination, not exclusively based on LPS binding and neutralization, but also on a direct effect on CD14 and MD-2 binding. NMR experiments in solution show that peptide addition changes the aggregation state of FP7, promoting the formation of larger micelles. These results suggest a relationship between the aggregation state of lipid A-like ligands and the type and intensity of TLR4 response. Chapter III describes a preclinical study in which FP7 is used in an experimental model of IBD. This study has the aim to evaluate a possible therapeutic strategy based on the use of small molecule that selectively targets TLR4/MD-2 complex to reduce IBD inflammation. The results obtained show that FP7 reduced the secretion of the main LPS-induced innate pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMCs) and lamina propria mononuclear cells (LPMCs) isolated from IBD patients. FP7 anti-inflammatory effect is due to a reduced activation of the main myeloid differentiation primary response gene (88) (Myd88)-depedent pathway effectors normally induced by LPS presence. We indicated that the mechanism of action of FP7 is related to its capacity to compete with LPS for the binding to MD-2 adaptor protein and to CD14 co-receptor. FP7 also reduced inflammation in vivo on a murine model of ulcerative colitis. Considering that IBD pathogenesis is associated to an abnormal innate immune response towards microbial antigens, TLR4 inhibition by chemical agents as FP7 emerged as a promising alternative approach to IBD treatment.
I recettori Toll-like (TLR) sono attivati in molte interazioni ospite-patogeno. Essi riconoscono pattern molecolari associati a patogeni (PAMP) inducendo la risposta immunitaria innata nell’ospite. Il TLR4 permette ai mammiferi di rilevare l’endotossina batterica, lipopolisaccaride (LPS). L’attivazione incontrollata del TLR4 è alla base di sepsi sistemica acuta e di molti disturbi infiammatori, come le malattie infiammatorie intestinali (IBD). La modulazione del TLR4 è pertanto di estremo interesse terapeutico. Questa tesi di dottorato si basa su tre articoli (capitolo 1-3) e ha lo scopo di studiare il potenziale ruolo terapeutico di piccole molecole attive sul TLR4, testate da sole o in combinazione con peptidi antimicrobici (AMP). Nel capitolo I mostriamo la progettazione e la caratterizzazione biologica di una serie di molecole anfifiliche con scaffold calixarenico. La struttura di questi composti è stata progettata mediante studi computazionali in modo da poter interagire con il complesso TLR4/MD-2 e con il co-recettore CD14. Alcuni calixareni ottenuti inibiscono l'attivazione di TLR4 indotta da LPS in modo dose-dipendente e riducono la produzione di citochine mediata da TLR4 in cellule immunitarie umane e murine. Inoltre, i guanidinocalixareni cationici sono in grado di inibire l’attivazione del TLR4 indotta dalla lectina PHA. Sebbene l’attività inibitoria dei guanidinocalixareni è stata correlata alla capacità di neutralizzare l’LPS, i risultati ottenuti in questo studio suggeriscono un effetto tali molecole diretto sul complesso TLR4/MD-2. La struttura dei calixareni potrebbe pertanto rivelarsi utile per lo sviluppo di nuovi modulatori del TLR4. Nel capitolo II sono riportati gli effetti della co-somministrazione di peptidi antimicrobici (AMP) con un antagonista sintetico del TLR4 (FP7) sull'attivazione del TLR4. Due AMP noti per neutralizzare LPS aumentano di un ordine di grandezza la potenza di FP7 nel bloccare il segnale mediato da TLR4. Questo effetto è mantenuto anche quando le cellule sono stimolate con un agonista del TLR4 diverso da LPS. I dati suggeriscono un possibile doppio meccanismo d’azione, non esclusivamente basato sulla capacità degli AMP di neutralizzare l’LPS, ma anche ad un effetto diretto sui recettori dell’endotossina. Esperimenti NMR in soluzione mostrano che l'aggiunta degli AMP modifica lo stato di aggregazione di FP7 promuovendo la formazione di micelle più grandi. Questi risultati suggeriscono una relazione tra lo stato di aggregazione di ligandi mimetici dell’LPS e il tipo/intensità della risposta mediata da TLR4. Il capitolo III descrive uno studio preclinico in cui l’antagonista FP7 è stato utilizzato in un modello sperimentale di malattia infiammatoria intestinale (IBD). Questo studio ha lo scopo di valutare una possibile strategia terapeutica basata sull'uso di piccole molecole dirette selettivamente sul complesso TLR4/MD-2 per ridurre l'infiammazione nelle IBD. I risultati ottenuti mostrano che FP7 riduce la secrezione di citochine proinfiammatorie indotta da LPS da parte di cellule mononucleate del sangue periferico (PBMC) e di cellule mononucleate della lamina propria (LPMC) isolate dai pazienti con IBD. L'effetto anti-infiammatorio di FP7 è dovuto ad una ridotta attivazione della via di segnalazione indotta da LPS dipendente dal fattore myeloid differentiation primary response gene (88) (Myd88). Lo studio mostra che il meccanismo di azione di FP7 è correlato alla sua capacità di competere con l’LPS per il legame con i recettori MD-2 e CD14. Inoltre FP7 riduce l'infiammazione in vivo su un modello murino di colite ulcerosa. Considerando che la patogenesi delle IBD è associata a un’eccessiva risposta immunitaria innata verso antigeni microbici, l'inibizione del TLR4 da parte di agenti chimici come FP7 potrebbe rivelarsi un promettente approccio alternativo al trattamento delle IBD.
Toll-like Receptor 4 (TLR4) therapeutic modulation: a chemical biology approach
FACCHINI, FABIO ALESSANDRO
2018
Abstract
Among the first receptors activated during host-pathogen interactions are Toll-like receptors (TLRs), which detect pathogen-associated molecular patterns (PAMPs) to induce innate and adaptive immune responses. TLR4 is the mammalian sensor of bacterial endotoxin, lipopolysaccharide (LPS). Dysregulated TLR4 activation is involved in acute systemic sepsis and in many disorders that involve inflammation, including inflammatory bowel diseases (IBDs). Therefore, therapeutic modulation of TLR4 signalling is of major interest. This PhD thesis is based on three papers (Chapter 1-3) and has the aim to study the capacity of synthetic small molecule TLR4 antagonists, alone or in combination with antimicrobial peptides (AMPs), to act as therapeutics in inflammatory diseases. In Chapter I, starting from the assumption that opportunely designed cationic amphiphiles can behave as ligands of the LPS receptor system and therefore modulate the TLR4 signaling, we present the rational design and biological characterization of a panel of amphiphilic guanidinocalixarenes. The structure of these compounds was computationally designed and optimized to dock into MD-2 and CD14 binding sites. We found that some of these calixarenes were active in inhibiting, in a dose-dependent way, the LPS-stimulated TLR4 activation and TLR4-dependent cytokine production in human and mouse immune cells. Moreover, cationic guanidinocalixarenes also inhibited TLR4 signaling when TLR4 was activated by the plant lectin PHA. While the activity of guanidinocalixarenes in inhibiting LPS toxic action has previously been related to their capacity to bind and neutralize LPS, the results obtained in this chapter suggest a direct antagonist effect of calixarenes on TLR4/MD-2 dimerization: this suggests the use of the calixarene scaffold for the development of new TLR4-directed therapeutics. In Chapter II is presented the effect of co-administration of antimicrobial peptides (AMPs) and a synthetic TLR4 antagonist (the glycolipid FP7) on TLR4 activation and signalling. The co-administration of two LPS-neutralizing peptides (a cecropin A-melittin hybrid peptide and a human cathelicidin) enhances by an order of magnitude the potency of FP7 in blocking the TLR4 signal. Interestingly, this potentiation effect also occurs when cells are stimulated with a non-LPS TLR4 agonist. Our data suggest a dual mechanism of action for the peptide/glycolipid combination, not exclusively based on LPS binding and neutralization, but also on a direct effect on CD14 and MD-2 binding. NMR experiments in solution show that peptide addition changes the aggregation state of FP7, promoting the formation of larger micelles. These results suggest a relationship between the aggregation state of lipid A-like ligands and the type and intensity of TLR4 response. Chapter III describes a preclinical study in which FP7 is used in an experimental model of IBD. This study has the aim to evaluate a possible therapeutic strategy based on the use of small molecule that selectively targets TLR4/MD-2 complex to reduce IBD inflammation. The results obtained show that FP7 reduced the secretion of the main LPS-induced innate pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMCs) and lamina propria mononuclear cells (LPMCs) isolated from IBD patients. FP7 anti-inflammatory effect is due to a reduced activation of the main myeloid differentiation primary response gene (88) (Myd88)-depedent pathway effectors normally induced by LPS presence. We indicated that the mechanism of action of FP7 is related to its capacity to compete with LPS for the binding to MD-2 adaptor protein and to CD14 co-receptor. FP7 also reduced inflammation in vivo on a murine model of ulcerative colitis. Considering that IBD pathogenesis is associated to an abnormal innate immune response towards microbial antigens, TLR4 inhibition by chemical agents as FP7 emerged as a promising alternative approach to IBD treatment.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_713369.pdf
accesso aperto
Dimensione
15.76 MB
Formato
Adobe PDF
|
15.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/76751
URN:NBN:IT:UNIMIB-76751