The spreading of neurodegenerative diseases such as Alzheimer’s disease (AD) and the correlated ever-growing medical emergency have directed the research toward a deeper and clearer knowledge of the biochemical mechanisms involved in these diseases. The downfall of AD is associated with specific features, which include oxidative stress, metal unbalance, and the accumulation and aggregation of a specific protein, the Amyloid β peptide (Aβ). In order to deepen and clarify how the above-mentioned factors could influence the onset and the progression of the disease, a multi-technical investigation was applied by means of Surface Plasmon Resonance (SPR), Mass Spectrometry (MS), and Fluorescence techniques combined with supporting techniques such as Circular Dichroism, Dynamic Light Scattering (DLS), and Cell viability assays which provide greater completeness to the experiments described here. Among the enzymes involved in Aβ homeostasis, Insulin-Degrading Enzyme (IDE) is a highly conserved zinc metallopeptidase capable of catalytically cleaving several substrates, including insulin and Aβ, playing a dual role in diabetes and AD. In this scenario, we have developed a novel SPR method (Chapter I) that allows for the direct measurement of enzyme cooperativity in the binding with insulin in the presence of different IDE activity modulators: carnosine (Car), adenosine triphosphate (ATP), and EDTA. In order to develop and optimize this novel method, insulin was selected as the model system, since it is the most studied and well-established IDE substrate. The results indicate that both positive and negative modulations of IDE activity can be correlated with an increase and a decrease of the measured Hill coefficient, respectively, providing new insights into the mechanism of IDE activity modulation. This preliminary screening will serve as the cornerstone for investigating the IDE-Aβ interaction and assessing the impact of modulators on this interaction through the utilization of the SPR technique. Peptides such as insulin and Aβ can undergo aggregation pathways, leading to the formation and deposition of amyloid plaques, which are hallmarks of type 2 diabetes mellitus (T2DM) and AD, respectively. However, monitoring the initial phases of this subtle mechanism and identifying the formation of oligomeric species, considered the first toxic species forming before fibril formation begins, are challenging tasks not easily achievable by common analytical techniques. For this reason, in Chapter II, we have demonstrated the possibility of monitoring the early stages of insulin aggregation by the application of synthesized Carbon dots (CDs) providing snapshots of the conformations adopted by insulin, used as a model system. Indeed, the use of insulin as a model system simplifies the analysis, since this peptide is much easier to handle compared to Aβ. Once we2 have established this methodology, the next phase will involve applying this analysis to the Aβ-CDs interaction. In addition, CDs were even applied for the detection and identification of isobaric peptides, whose primary sequence is based on the combination of TAT, a cell-penetrating peptide, and Car. Comprehensive fluorescence studies confirm the ability to distinguish isobaric peptides based on the anchoring mode to CDs, which depends on the specific functional groups covering the surface of CDs and on the specific primary sequence of the peptide under analysis. In addition, the investigation of Aβ-oxygen adducts (Chapter III) was achieved by the use of a mass spectrometer modified ad hoc, allowing for the first time to scrutinize oxygen adducts by the introduction of gases (He, O2) into the mass spectrometer. Preliminary results demonstrate the formation of Aβ1-40-oxygen adducts both in the absence and in the presence of copper ions, whereas no oxygen adducts in the case of Aβ fragments (Aβ1-16, Aβ12-28, Aβ25-35, and Aβ28-35) were detected, suggesting the entrapment of O2 molecules occurs only for the full-length Aβ peptide. The detection of Aβ1-40-oxygen adducts is reached thanks to the cooling down effect exerted by helium and oxygen gases, which are directly inserted within the mass spectrometer. Moreover, the mass analysis performed on the Aβ fragments in the presence of copper ions provides insights into the copper coordination sites within the hydrophilic short Aβ chains (Aβ1-16, Aβ12-28), and reveals additional copper binding sites within the Aβ hydrophobic regions (Aβ25-35, Aβ28-35). This not only sheds light on their involvement in the Aβ aggregation pathway but also better elucidates the coordination of different Aβ species with copper ions. This multi-technical and cross-sectional approach allowed us to explore innovative and unconventional strategies for counteracting AD, examining the same problem from different points of view. These alternative methods can be considered springboards for new analyses that could open up new insights and new therapeutic approaches in the future.
La diffusione delle malattie neurodegenerative come l'Alzheimer (AD) e l’emergenza medica hanno orientato la ricerca verso una conoscenza più approfondita dei meccanismi biochimici coinvolti in tali patologie. Il declino dell'AD è associato a specifiche caratteristiche, tra cui lo stress ossidativo, lo sbilanciamento dei metalli, l'accumulo e l'aggregazione di una proteina specifica, il peptide β-amiloide (Aβ). Al fine di approfondire e chiarire come tali fattori possano influenzare l'insorgenza e la progressione della malattia, si è adottato un approccio multi-tecnica. Tale approccio ha coinvolto la tecnica di Risonanza Plasmonica di Superficie (SPR), la Spettrometria di Massa (MS) e tecniche di fluorescenza, integrate con metodologie di supporto come il Dicroismo Circolare, la Spettroscopia di Diffusione Dinamica della Luce (DLS) e saggi di vitalità cellulare. Tra gli enzimi coinvolti nell'omeostasi dell'Aβ, l'Insulin-Degrading Enzyme (IDE) è una metalloproteasi complessante uno ione zinco capace di cleavage catalitico di diversi substrati, tra cui insulina e Aβ, svolgendo un ruolo duplice nel diabete e nell'AD. In questo contesto, è stato sviluppato un nuovo metodo SPR (Capitolo I) che consente la misurazione diretta della cooperatività espressa dall’insulina nell’interazione con l'enzima in presenza di diversi modulatori dell'attività di IDE quali la Carnosina (Car), l’Adenosina trifosfato (ATP) ed l’EDTA. Per elaborare e perfezionare questo innovativo approccio, è stata scelta l'insulina come modello di riferimento, essendo il substrato più utilizzato per studiare l'attività dell'enzima IDE. I risultati evidenziano che le variazioni positive e negative nell'attività dell'IDE sono rispettivamente associate a un aumento e a una diminuzione del coefficiente di Hill, fornendo così nuove prospettive sul meccanismo di modulazione dell'attività dell'IDE. Questo screening preliminare servirà come fondamento per indagare l'interazione IDE-Aβ e valutare l'impatto dei modulatori su questa interazione attraverso l'utilizzo della tecnica SPR. I peptidi come insulina e Aβ possono subire processi di aggregazione, portando alla formazione e deposizione di placche amiloidi, che sono segni distintivi del diabete mellito di tipo 2 (T2DM) e dell'AD, rispettivamente. Tuttavia, monitorare le fasi iniziali di questo delicato meccanismo e identificare la formazione di specie oligomeriche, considerate le prime entità tossiche che emergono prima della generazione delle fibrille, rappresenta una sfida complessa e non facilmente superabile mediante le consuete tecniche analitiche. Per questo motivo, nel Capitolo II, abbiamo dimostrato la possibilità di monitorare le prime fasi dell'aggregazione dell'insulina mediante l'applicazione di nanoparticelle a base di carbonio (CDs) che forniscono istantanee delle conformazioni assunte dall'insulina, utilizzata anche qui come sistema modello. Infatti, l'uso dell'insulina come sistema modello semplifica l'analisi, poiché questo peptide è molto più facile da gestire rispetto all'Aβ. Una volta stabilita questa metodologia, la fase successiva comporterà l'applicazione di questa analisi per l'interazione Aβ-CDs. Inoltre, i CDs sono stati utilizzati per la rilevazione e l'identificazione di peptidi isobarici, la cui sequenza primaria è data dalla combinazione del TAT, un peptide penetrante le cellule, e Car. Questi studi di fluorescenza confermano la capacità di distinguere i peptidi isobarici in base alla modalità con cui tali peptidi si ancorano ai CDs. Ciò dipende dagli specifici gruppi funzionali che ricoprono la superficie dei CDs e dalla specifica sequenza primaria del peptide in analisi. L’indagine degli addotti ossigeno-Aβ, discussa nel Capitolo III, è stata ottenuta mediante l'uso di uno spettrometro di massa modificato ad hoc, consentendo per la prima volta di esaminare gli addotti di ossigeno con l'introduzione di gas, quali He e O2, nello spettrometro di massa. I risultati preliminari dimostrano la formazione di addotti di ossigeno di Aβ1-40 sia in assenza che in presenza di ioni di rame, mentre non sono stati rilevati addotti di ossigeno nel caso di frammenti di Aβ (Aβ1-16, Aβ12-28, Aβ25-35 e Aβ28-35). Ciò suggerisce che l'intrappolamento delle molecole di O2 si verifichi esclusivamente nel caso del peptide Aβ1-40. La rilevazione degli addotti di ossigeno-Aβ1-40 è raggiunta grazie all'effetto di raffreddamento esercitato dai gas elio e ossigeno, che vengono inseriti direttamente nello spettrometro di massa. Inoltre, l'analisi di massa eseguita sui frammenti di Aβ in presenza di ioni di rame fornisce approfondimenti sui siti di coordinazione del rame all'interno delle catene idrofile di Aβ (Aβ1-16, Aβ12-28) e rivela ulteriori siti di legame del rame all'interno delle regioni idrofobiche di Aβ (Aβ25-35, Aβ28-35). Essendo questi frammenti generati a loro volta dalle metalloproteasi come l'IDE, la ricerca ha evidenziato il loro coinvolgimento nella coordinazione con il rame, suggerendo che non solo l'Aβ1-40 svolge un ruolo nella patologia, ma anche i suoi frammenti potrebbero contribuire a meccanismi implicati nel peggioramento o nell'inizio della patologia. Questo approccio multi-tecnico e innovativo ci ha consentito di esplorare strategie nuove e non convenzionali per contrastare l'AD, analizzando la stessa problematica da prospettive diverse. Tali metodologie alternative possono essere considerate come trampolini di lancio per ulteriori analisi, in grado di aprire nuove prospettive e approcci terapeutici inediti per il futuro.
Svelare i meccanismi biomolecolari della malattia di Alzheimer: Un'indagine multi-tecnica dei fattori chimici coinvolti nello squilibrio del peptide β amiloide
DISTEFANO, ALESSIA
2023
Abstract
The spreading of neurodegenerative diseases such as Alzheimer’s disease (AD) and the correlated ever-growing medical emergency have directed the research toward a deeper and clearer knowledge of the biochemical mechanisms involved in these diseases. The downfall of AD is associated with specific features, which include oxidative stress, metal unbalance, and the accumulation and aggregation of a specific protein, the Amyloid β peptide (Aβ). In order to deepen and clarify how the above-mentioned factors could influence the onset and the progression of the disease, a multi-technical investigation was applied by means of Surface Plasmon Resonance (SPR), Mass Spectrometry (MS), and Fluorescence techniques combined with supporting techniques such as Circular Dichroism, Dynamic Light Scattering (DLS), and Cell viability assays which provide greater completeness to the experiments described here. Among the enzymes involved in Aβ homeostasis, Insulin-Degrading Enzyme (IDE) is a highly conserved zinc metallopeptidase capable of catalytically cleaving several substrates, including insulin and Aβ, playing a dual role in diabetes and AD. In this scenario, we have developed a novel SPR method (Chapter I) that allows for the direct measurement of enzyme cooperativity in the binding with insulin in the presence of different IDE activity modulators: carnosine (Car), adenosine triphosphate (ATP), and EDTA. In order to develop and optimize this novel method, insulin was selected as the model system, since it is the most studied and well-established IDE substrate. The results indicate that both positive and negative modulations of IDE activity can be correlated with an increase and a decrease of the measured Hill coefficient, respectively, providing new insights into the mechanism of IDE activity modulation. This preliminary screening will serve as the cornerstone for investigating the IDE-Aβ interaction and assessing the impact of modulators on this interaction through the utilization of the SPR technique. Peptides such as insulin and Aβ can undergo aggregation pathways, leading to the formation and deposition of amyloid plaques, which are hallmarks of type 2 diabetes mellitus (T2DM) and AD, respectively. However, monitoring the initial phases of this subtle mechanism and identifying the formation of oligomeric species, considered the first toxic species forming before fibril formation begins, are challenging tasks not easily achievable by common analytical techniques. For this reason, in Chapter II, we have demonstrated the possibility of monitoring the early stages of insulin aggregation by the application of synthesized Carbon dots (CDs) providing snapshots of the conformations adopted by insulin, used as a model system. Indeed, the use of insulin as a model system simplifies the analysis, since this peptide is much easier to handle compared to Aβ. Once we2 have established this methodology, the next phase will involve applying this analysis to the Aβ-CDs interaction. In addition, CDs were even applied for the detection and identification of isobaric peptides, whose primary sequence is based on the combination of TAT, a cell-penetrating peptide, and Car. Comprehensive fluorescence studies confirm the ability to distinguish isobaric peptides based on the anchoring mode to CDs, which depends on the specific functional groups covering the surface of CDs and on the specific primary sequence of the peptide under analysis. In addition, the investigation of Aβ-oxygen adducts (Chapter III) was achieved by the use of a mass spectrometer modified ad hoc, allowing for the first time to scrutinize oxygen adducts by the introduction of gases (He, O2) into the mass spectrometer. Preliminary results demonstrate the formation of Aβ1-40-oxygen adducts both in the absence and in the presence of copper ions, whereas no oxygen adducts in the case of Aβ fragments (Aβ1-16, Aβ12-28, Aβ25-35, and Aβ28-35) were detected, suggesting the entrapment of O2 molecules occurs only for the full-length Aβ peptide. The detection of Aβ1-40-oxygen adducts is reached thanks to the cooling down effect exerted by helium and oxygen gases, which are directly inserted within the mass spectrometer. Moreover, the mass analysis performed on the Aβ fragments in the presence of copper ions provides insights into the copper coordination sites within the hydrophilic short Aβ chains (Aβ1-16, Aβ12-28), and reveals additional copper binding sites within the Aβ hydrophobic regions (Aβ25-35, Aβ28-35). This not only sheds light on their involvement in the Aβ aggregation pathway but also better elucidates the coordination of different Aβ species with copper ions. This multi-technical and cross-sectional approach allowed us to explore innovative and unconventional strategies for counteracting AD, examining the same problem from different points of view. These alternative methods can be considered springboards for new analyses that could open up new insights and new therapeutic approaches in the future.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Alessia Distefano.pdf
accesso aperto
Dimensione
7.4 MB
Formato
Adobe PDF
|
7.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/77180
URN:NBN:IT:UNICT-77180