With the term cancer are intended many species of diseases having quite different properties from each other. Despite such vast differences, the mechanisms beyond the onset of any kind of cancer are very similar and can be classified in two main groups depending on their stage. The first is related to the dysregulation of particular genes (oncogenes), that results in an impairment of the cell cycle. The second concerns the ability of cancer cells to continuously divide and migrate through tissues, that results in a highly invasive potential. From a mechanical point of view, the investigation of such features can be crucial for a deeper understanding of cancer onset and progression as well as for the study of novel pharmacological treatments. The outbreak of cancer is caused by a deficiency in the regulation of the cell cycle which, in turn, often depends on an abnormal expression of oncogenes. It is the case of the proto-oncogene c-KIT, that encodes for a mast/stem cell growth factor receptor. Its regulation relies mainly on its promoter, which is constituted by 3 distinct three-dimensional DNA structures called G-quadruplexes (G4s). Those structures can be studied by means of nanomechanical tools such as Magnetic Tweezers, which can recognize folded G4s at single-molecule level, thus enabling to study their role in the regulation of the oncogene. After the onset of cancer, a generic cell undergoes mechanical changes: it divides quickly, and it starts migrating. Both phenomena require a modification in the cell structural phenotype, eventually modifying its rigidity. Chronic lymphocytic leukemia is a case in point: malignant B lymphocytes continuously traffic between peripheral blood and lymphoid tissues. Such frequent migrations require a change in the rigidity of cells. In this case, Atomic Force Microscopy can provide a nanomechanical approach allowing to measure the stiffness of single cells from patients with leukemia, which is slightly decreased if compared to rigidity of cells from healthy donors. This feature can also allow to observe the effect of targeted therapies on the cells, evaluating their effect from a mechanical point of view.
Nonostante gli enormi passi avanti sulla comprensione dei meccanismi d’azione del cancro e nello sviluppo di farmaci antitumorali, la maggior parte delle forme di cancro è ancora incurabile. La ragione di tale insuccesso è radicata nella complessità di questa malattia, che è ancora poco conosciuta sia in fase di insorgenza, dovuta alla misregolazione di oncogeni, sia in fase di metastatizzazione delle cellule cancerose. Lo studio di tali caratteristiche da un punto di vista meccanico può fornire una visione differente dei meccanismi di azione del cancro ed aiutare a contestualizzarli all’interno di processi estremamente complessi. L’insorgenza del cancro è dovuta ad una mancata regolazione del ciclo cellulare, che a sua volta dipende spesso da un’alterata espressione dei cosiddetti oncogeni. Ne è un esempio il proto-oncogene c-KIT, che codifica per un fattore di crescita delle cellule staminali. La regolazione della sua espressione è controllata dal suo promotore prossimale, la cui struttura è caratterizzata dalla presenza di 3 superstrutture tridimensionali complesse che si formano su uno dei due filamenti della sua sequenza, chiamate G-quadruplexes. Tali strutture sembrerebbero avere un ruolo nel riconoscimento del promotore da parte della polimerasi e nell’assemblaggio della macchina trascrizionale, ma la loro funzione non è ancora chiara. Lo studio della nanomeccanica di tali strutture a livello di singola molecola (grazie al Magnetic Tweezers) può fornire importanti informazioni sul loro ruolo e sulle modalità con cui regolano l’espressione dell’oncogene. In seguito all’insorgenza del cancro, le cellule coinvolte subiscono forti cambiamenti strutturali: iniziano a dividersi velocemente e a migrare incontrollatamente. Entrambi questi processi richiedono un grande cambiamento nella struttura cellulare ed in particolare nella rigidità della cellula. La leucemia linfoide cronica (CLL) rappresenta un caso esemplare di tali capacità migratorie, non solo nell cellule cancerose, ma anche in quelle sane. Anche in questo caso, la nanomeccanica offre numerosi strumenti che permettono di studiare tali modifiche a livello di singola cellula, in particolare il microscopio a forza atomica (AFM) e il citofluorimetro a pressione deformante (RT-DC) offrono la possibilità di studiare le dinamiche cellulari in differenti condizioni e di osservare gli effetti dei farmaci di prima linea direttamente sulle cellule di pazienti malati.
Nanomeccanica per la Ricerca sul Cancro
BUGLIONE, ENRICO
2021
Abstract
With the term cancer are intended many species of diseases having quite different properties from each other. Despite such vast differences, the mechanisms beyond the onset of any kind of cancer are very similar and can be classified in two main groups depending on their stage. The first is related to the dysregulation of particular genes (oncogenes), that results in an impairment of the cell cycle. The second concerns the ability of cancer cells to continuously divide and migrate through tissues, that results in a highly invasive potential. From a mechanical point of view, the investigation of such features can be crucial for a deeper understanding of cancer onset and progression as well as for the study of novel pharmacological treatments. The outbreak of cancer is caused by a deficiency in the regulation of the cell cycle which, in turn, often depends on an abnormal expression of oncogenes. It is the case of the proto-oncogene c-KIT, that encodes for a mast/stem cell growth factor receptor. Its regulation relies mainly on its promoter, which is constituted by 3 distinct three-dimensional DNA structures called G-quadruplexes (G4s). Those structures can be studied by means of nanomechanical tools such as Magnetic Tweezers, which can recognize folded G4s at single-molecule level, thus enabling to study their role in the regulation of the oncogene. After the onset of cancer, a generic cell undergoes mechanical changes: it divides quickly, and it starts migrating. Both phenomena require a modification in the cell structural phenotype, eventually modifying its rigidity. Chronic lymphocytic leukemia is a case in point: malignant B lymphocytes continuously traffic between peripheral blood and lymphoid tissues. Such frequent migrations require a change in the rigidity of cells. In this case, Atomic Force Microscopy can provide a nanomechanical approach allowing to measure the stiffness of single cells from patients with leukemia, which is slightly decreased if compared to rigidity of cells from healthy donors. This feature can also allow to observe the effect of targeted therapies on the cells, evaluating their effect from a mechanical point of view.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_835767.pdf
Open Access dal 27/01/2024
Dimensione
4.18 MB
Formato
Adobe PDF
|
4.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/77751
URN:NBN:IT:UNIMIB-77751