This comprehensive work presents the culmination of a three-year research activity spanning three key domains. The foremost focus of this research has been the search for new physics effects in VBS processes with the Effective Field Theory (EFT) approach. To fulfill this purpose a novel statistical model has been crafted to facilitate the interpretation and combination of EFT analyses. To date, this model has been employed in over 10 analyses conducted by the Compact Muon Solenoid (CMS) collaboration. Characterized by a global perspective, this model readily accommodates statistical combinations and lays a robust groundwork for future global EFT fitting within the CMS experiment. In this context, the VBS sensitivity to EFT dimension-six operators has been evaluated through a parton-level exercise involving the combination of Vector Boson Scattering (VBS) channels and a diboson channel, simultaneously constraining 14 Wilson coefficients. These results were compared to an additional combination study involving triboson processes. The knowledge of dimension-six effects in VBS has also been deepened by studying a real-world problem, encompassing background effects and uncertainties, through the analysis of the VBS WV process with a semileptonic final state. Challenges arising from the intricate VBS signature, featuring 6 final-state fermions, were surmounted by devising more efficient methods for matrix-element reweighting. The expected sensitivity to 8 Wilson coefficients was computed utilizing the CMS Run 2 dataset, which amounts to an integrated luminosity of 137 inverse femtobarns. Notably, for a Standard Model (SM) process, limit determinations were performed both for individual operators (with the others set to zero) and globally, allowing all coefficients to vary freely in a maximum likelihood fit. In anticipation of an upcoming global EFT combination for VBS channels, the logical starting point involves a unified interpretation based on the SM. The combination of eight VBS analyses was executed to quantify the parameters governing vector boson production within the VBS topology. In particular, the interplay between three processes can be instrumental in the observation of two Z bosons scattering through VBS for which CMS only obtained strong evidence. On the instrumental side, particular emphasis was placed on the development of the Data Acquisition (DAQ) system for the MIP Timing Detector (MTD), which will be installed at CMS during the high luminosity phase of the Large Hadron Collider. The finalization of the backend component necessitated a comprehensive revision of firmware and software. The software architecture was designed with modularity in mind, establishing a one-to-one relationship between hardware components and software abstractions. Successful testing of this software included communication with the chips comprising the Barrel Timing Layer (BTL) front-end electronics. In order to streamline and optimize the forthcoming detector construction phase, a web-based Graphical User Interface was developed to facilitate interaction with less experienced users, ensuring a prompt, robust, and efficient system for characterizing assembled modules.

Questo lavoro rappresenta la culminazione di un'attività di ricerca triennale che spazia su tre domini chiave. Il principale obiettivo di questo studio è stata la ricerca di nuovi effetti di fisica nei processi di VBS con l'approccio Effective Field Theory (EFT). Per soddisfare questo scopo è stato creato un nuovo modello statistico per facilitare l'interpretazione e la combinazione delle analisi EFT. Ad oggi, questo modello è stato impiegato in oltre 10 analisi condotte dalla collaborazione Compact Muon Solenoid (CMS). Caratterizzato da una prospettiva globale, il modello supporta facilmente combinazioni statistiche e costituisce una solida base per futuri studi globali di EFT nell'esperimento CMS. In questo contesto, la sensibilità di VBS ad operatori EFT di dimensione sei è stata valutata attraverso un esercizio a livello di partoninco che coinvolge la combinazione di canali di Vector Boson Scattering (VBS) e un canale di diboson, vincolando contemporaneamente 14 coefficienti di Wilson. Questi risultati sono stati confrontati con uno studio di combinazione aggiuntivo che coinvolge processi tribosonici. La conoscenza degli effetti di dimensione sei in VBS è stata approfondita anche attraverso lo studio di un problema più realistico, che comprende effetti di background e incertezze, mediante l'analisi del processo VBS WV con uno stato finale semileptonico. Le sfide derivanti dalla complessità del VBS, che presenta 6 fermioni nello stato finale, sono state superate mediante la creazione di metodi più efficienti per il ripesamento tramite elementi di matrice. La sensibilità prevista per 8 coefficienti di Wilson è stata calcolata utilizzando il dataset del CMS Run 2, che corrisponde ad una luminosità integrata di 137 femtobarn inversi. In particolare sono state effettuate determinazioni dei limiti sia per singoli operatori (con gli altri impostati a zero) che globalmente, consentendo a tutti i coefficienti di variare liberamente in un fit di massima verosimiglianza. In previsione di una futura combinazione globale di EFT per i canali VBS, il punto di partenza logico comporta un'interpretazione unificata basata sul Modello Standard. La combinazione di otto analisi VBS è stata eseguita per quantificare i parametri che governano la produzione di bosoni vettori nella topologia VBS. In particolare, l'interazione tra tre di questi processi può essere fondamentale nell'osservazione dello scattering di due bosoni Z in topologia VBS, per i quali il CMS ha ottenuto solo forti evidenze. Sul fronte strumentale, è stata posta particolare enfasi nello sviluppo del sistema di acquisizione dati (DAQ) per il MIP Timing Detector (MTD), che sarà installato a CMS durante la fase ad alta luminosità del Large Hadron Collider. La finalizzazione delle componenti di backend ha imposto una revisione completa del firmware e del software. L'architettura del software è stata progettata per essere modulare, stabilendo una relazione uno a uno tra i componenti hardware e le astrazioni software. La comunicazione con i chip che compongono l'elettronica front-end del Barrel Timing Layer (BTL) è stata testata con successo attraverso il nuovo software. Al fine di ottimizzare la futura fase di costruzione del rivelatore, è stata sviluppata un'Interfaccia Grafica web-based per facilitare l'interazione con utenti meno esperti, garantendo un sistema rapido, robusto ed efficiente per la caratterizzazione dei moduli assemblati.

SM and EFT interpretation of Vector Boson Scattering measurements at CMS and development of the DAQ system for the Barrel Timing Layer for HL-LHC

BOLDRINI, GIACOMO
2024

Abstract

This comprehensive work presents the culmination of a three-year research activity spanning three key domains. The foremost focus of this research has been the search for new physics effects in VBS processes with the Effective Field Theory (EFT) approach. To fulfill this purpose a novel statistical model has been crafted to facilitate the interpretation and combination of EFT analyses. To date, this model has been employed in over 10 analyses conducted by the Compact Muon Solenoid (CMS) collaboration. Characterized by a global perspective, this model readily accommodates statistical combinations and lays a robust groundwork for future global EFT fitting within the CMS experiment. In this context, the VBS sensitivity to EFT dimension-six operators has been evaluated through a parton-level exercise involving the combination of Vector Boson Scattering (VBS) channels and a diboson channel, simultaneously constraining 14 Wilson coefficients. These results were compared to an additional combination study involving triboson processes. The knowledge of dimension-six effects in VBS has also been deepened by studying a real-world problem, encompassing background effects and uncertainties, through the analysis of the VBS WV process with a semileptonic final state. Challenges arising from the intricate VBS signature, featuring 6 final-state fermions, were surmounted by devising more efficient methods for matrix-element reweighting. The expected sensitivity to 8 Wilson coefficients was computed utilizing the CMS Run 2 dataset, which amounts to an integrated luminosity of 137 inverse femtobarns. Notably, for a Standard Model (SM) process, limit determinations were performed both for individual operators (with the others set to zero) and globally, allowing all coefficients to vary freely in a maximum likelihood fit. In anticipation of an upcoming global EFT combination for VBS channels, the logical starting point involves a unified interpretation based on the SM. The combination of eight VBS analyses was executed to quantify the parameters governing vector boson production within the VBS topology. In particular, the interplay between three processes can be instrumental in the observation of two Z bosons scattering through VBS for which CMS only obtained strong evidence. On the instrumental side, particular emphasis was placed on the development of the Data Acquisition (DAQ) system for the MIP Timing Detector (MTD), which will be installed at CMS during the high luminosity phase of the Large Hadron Collider. The finalization of the backend component necessitated a comprehensive revision of firmware and software. The software architecture was designed with modularity in mind, establishing a one-to-one relationship between hardware components and software abstractions. Successful testing of this software included communication with the chips comprising the Barrel Timing Layer (BTL) front-end electronics. In order to streamline and optimize the forthcoming detector construction phase, a web-based Graphical User Interface was developed to facilitate interaction with less experienced users, ensuring a prompt, robust, and efficient system for characterizing assembled modules.
22-gen-2024
Italiano
Questo lavoro rappresenta la culminazione di un'attività di ricerca triennale che spazia su tre domini chiave. Il principale obiettivo di questo studio è stata la ricerca di nuovi effetti di fisica nei processi di VBS con l'approccio Effective Field Theory (EFT). Per soddisfare questo scopo è stato creato un nuovo modello statistico per facilitare l'interpretazione e la combinazione delle analisi EFT. Ad oggi, questo modello è stato impiegato in oltre 10 analisi condotte dalla collaborazione Compact Muon Solenoid (CMS). Caratterizzato da una prospettiva globale, il modello supporta facilmente combinazioni statistiche e costituisce una solida base per futuri studi globali di EFT nell'esperimento CMS. In questo contesto, la sensibilità di VBS ad operatori EFT di dimensione sei è stata valutata attraverso un esercizio a livello di partoninco che coinvolge la combinazione di canali di Vector Boson Scattering (VBS) e un canale di diboson, vincolando contemporaneamente 14 coefficienti di Wilson. Questi risultati sono stati confrontati con uno studio di combinazione aggiuntivo che coinvolge processi tribosonici. La conoscenza degli effetti di dimensione sei in VBS è stata approfondita anche attraverso lo studio di un problema più realistico, che comprende effetti di background e incertezze, mediante l'analisi del processo VBS WV con uno stato finale semileptonico. Le sfide derivanti dalla complessità del VBS, che presenta 6 fermioni nello stato finale, sono state superate mediante la creazione di metodi più efficienti per il ripesamento tramite elementi di matrice. La sensibilità prevista per 8 coefficienti di Wilson è stata calcolata utilizzando il dataset del CMS Run 2, che corrisponde ad una luminosità integrata di 137 femtobarn inversi. In particolare sono state effettuate determinazioni dei limiti sia per singoli operatori (con gli altri impostati a zero) che globalmente, consentendo a tutti i coefficienti di variare liberamente in un fit di massima verosimiglianza. In previsione di una futura combinazione globale di EFT per i canali VBS, il punto di partenza logico comporta un'interpretazione unificata basata sul Modello Standard. La combinazione di otto analisi VBS è stata eseguita per quantificare i parametri che governano la produzione di bosoni vettori nella topologia VBS. In particolare, l'interazione tra tre di questi processi può essere fondamentale nell'osservazione dello scattering di due bosoni Z in topologia VBS, per i quali il CMS ha ottenuto solo forti evidenze. Sul fronte strumentale, è stata posta particolare enfasi nello sviluppo del sistema di acquisizione dati (DAQ) per il MIP Timing Detector (MTD), che sarà installato a CMS durante la fase ad alta luminosità del Large Hadron Collider. La finalizzazione delle componenti di backend ha imposto una revisione completa del firmware e del software. L'architettura del software è stata progettata per essere modulare, stabilendo una relazione uno a uno tra i componenti hardware e le astrazioni software. La comunicazione con i chip che compongono l'elettronica front-end del Barrel Timing Layer (BTL) è stata testata con successo attraverso il nuovo software. Al fine di ottimizzare la futura fase di costruzione del rivelatore, è stata sviluppata un'Interfaccia Grafica web-based per facilitare l'interazione con utenti meno esperti, garantendo un sistema rapido, robusto ed efficiente per la caratterizzazione dei moduli assemblati.
EFT; SM; VBS; Combinazione; MTD
PAGANONI, MARCO
GOVONI, PIETRO
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_800692.pdf

accesso aperto

Dimensione 7.83 MB
Formato Adobe PDF
7.83 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/77760
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-77760