Metastasis is responsible of more than 90% of cancer related mortality in patients with solid tumors. Bone metastases are the natural consequence of many primary tumors such as breast, lung and prostate cancer. Despite progress in the field, many questions remain about the mechanisms driving organ-specific metastasis. Unfortunately, standard 2D in vitro and in vivo models do not allow to analyze specific aspects of the metastatic dissemination, which is largely dependent from an intricate plethora of mechanical and biochemical stimuli. Indeed, traditional in vitro systems do not take into account the complex cell-cell and cell-matrix interactions characterizing physiological tissues. On the other side, in vivo models analyze the metastatic dissemination in living organisms, even though imaging limitations and reduced control over biochemical and biophysical stimuli do not allow to dissect with high level of detail specific steps of the metastatic cascade. For these reasons, the goal of my PhD thesis was to contribute to the understanding of the molecular and cellular biology regulating the metastatic niche through the generation and exploitation of novel advanced 3D vascularized organ-specific human models. More in detail, micro and macroscale organ-specific models were engineered and exploited to investigate cancer cell interaction with the organ specific vascular niche in metastasis context. Microscale models provide highly controlled microenvironments where specific biochemical/biophysical stimuli can be applied to condition and analyze cancer cell behavior. At the same time, macroscale systems allow to perform proteomic and transcriptomic analyses on retrieved cells and media, given the more relevant scale of the tissue construct. In this thesis work, 3D vascularized organ-specific micro-environment, such as bone and muscle, were engineered through a tuned approach leading to the progressive addition to the 3D co-culture of all the cells composing the physiological target organ. These models allowed me to demonstrate that direct contact between breast cancer cells and osteoblasts upregulates cancer cell expression of RANKL, which is a key mediator of osteolytic bone metastases. Subsequently I applied microscale models to demonstrate that organ-specific properties of the skeletal muscle inhibit breast cancer metastases and that muscle-secreted molecules including adenosine can be used to impair breast cancer cell extravasation to bone. Mesoscale models of bone and muscle were then coupled to microscale systems to perform genetic analyses on organ-specific endothelial features which could be responsible for the organotropism of cancer metastases. At the same time, I analyzed the role of the vascular niche in the metastatic dissemination, demonstrating the key role played by the CDK5-Talin1-FAKS732 signaling axis in mediating breast cancer cell adhesion to the endothelium and subsequent extravasation to the metastatic site. Immune cells including platelets and neutrophils were then added to the system in order to characterize their role in the process of extravasation. In particular, I analyzed the effect of a known anti-platelet drug on cancer cell dissemination demonstrating that its anti-metastatic properties are due to specific effects on each component of the early metastatic niche. In particular, I found that the drug acts through integrin αIIbβ3 and Src on endothelial cadherin phosphorylation limiting cadherin disassembly and delocalization from the cell membrane. This mechanism is responsible for the reduced extravasation of cancer cells. Overall, these models allowed to analyze with unprecedented level of detail the cellular and molecular mechanisms driving the organ-specific cancer cell extravasation and could pave the way for the development of novel and more effective anti-metastatic therapies.
Le metastasi sono responsabili di più del 90% della mortalità in pazienti affetti da tumori solidi. Le metastasi all’osso rappresentano la naturale conseguenza di diversi tumori primari tra cui i tumori alla mammella, al polmone e alla prostata. Nonostante i progressi nel settore, diverse domande rimangono aperte circa i meccanismi che guidano la formazione di metastasi organo-specifica. Modelli in vitro 2D ed in vivo non consentono di analizzare specifici aspetti della metastasi, che dipende da complessi stimoli meccanici e biochimici. Infatti i modelli in vitro tradizionali non considerano le complesse interazioni cellula-cellula e cellula-matrice dei tessuti fisiologici. Modelli in vivo analizzano la metastasi in organismi viventi anche se le limitazioni nell’acquisizione di immagini ed il ridotto controllo degli stimoli applicati non consentono di analizzare in dettaglio ogni passaggio della disseminazione metastatica. L’obiettivo della tesi di dottorato è stato quello di comprendere i meccanismi biologici responsabili della metastasi attraverso lo sviluppo di modelli 3D organo-specifici vascolarizzati contenenti cellule umane. Modelli alla micro e macroscala sono stati sviluppati per analizzare l’interazione delle cellule tumorali con la nicchia vascolare organo-specifica. I modelli alla microscala consentono di avere ambienti altamente controllati con l’applicazione di precisi stimoli biochimici e biofisici. I modelli alla macroscala consentono di recuperare cellule e mezzi di coltura per analisi proteomiche e trascrittomiche. Durante la tesi, ho sviluppato modelli vascolarizzati di osso e muscolo attraverso l’aggiunta progressiva di ogni componente cellulare responsabile della funzione dell’organo considerato. I modelli sviluppati mi hanno consentito di dimostrare come il contatto diretto tra cellule di tumore della mammella ed osteoblasti aumenti l’espressione di RANKL delle cellule tumorali che è responsabile delle metastasi osteolitiche all’osso. Ho applicato modelli alla microscala per dimostrare le proprietà antimetastatiche del muscolo e come molecole secrete da questo tessuto possono limitare l’extravasazione di cellule di tumore della mammella verso l’osso. Modelli alla mesoscala di osso e muscolo sono stati sviluppati per caratterizzare le proprietà dell’endotelio organo-specifico che potrebbero essere responsabili delle metastasi organo-specifiche. Ho analizzato inoltre il ruolo della nicchia vascolare nelle metastasi, dimostrando il ruolo chiave di CDK5-Talin1-FAKS732 nel mediare l’adesione ed extravasazione delle cellule di tumore della mammella. In seguito ho aggiunto piastrine e neutrofili al sistema per caratterizzare il loro ruolo nel processo di extravasazione. Ho analizzato l’effetto di un farmaco antipiastrinico usato in clinica dimostrando che le sue proprietà antimetastatiche sono dovute ad un effetto specifico su ogni componente della nicchia metastatica. In particolare, il farmaco agisce mediante l’integrina αIIbβ3 e Src sulla fosforilazione delle caderine vascolari limitando la loro delocalizzazione dalla membrana cellulare. Questo meccanismo è responsabile per la ridotta extravasazione delle cellule tumorali. Concludendo, i modelli sviluppati hanno consentito di analizzare in dettaglio i meccanismi cellulari e molecolari responsabili della metastasi organo-specifica e potrebbero promuovere lo sviluppo di nuove e più efficaci terapie antimetastatiche.
Dissecting the critical role of cancer/endothelial interactions in metastatic cascade through engineered 3D vascularized microfluidic and mesoscale models
GILARDI, MARA
2017
Abstract
Metastasis is responsible of more than 90% of cancer related mortality in patients with solid tumors. Bone metastases are the natural consequence of many primary tumors such as breast, lung and prostate cancer. Despite progress in the field, many questions remain about the mechanisms driving organ-specific metastasis. Unfortunately, standard 2D in vitro and in vivo models do not allow to analyze specific aspects of the metastatic dissemination, which is largely dependent from an intricate plethora of mechanical and biochemical stimuli. Indeed, traditional in vitro systems do not take into account the complex cell-cell and cell-matrix interactions characterizing physiological tissues. On the other side, in vivo models analyze the metastatic dissemination in living organisms, even though imaging limitations and reduced control over biochemical and biophysical stimuli do not allow to dissect with high level of detail specific steps of the metastatic cascade. For these reasons, the goal of my PhD thesis was to contribute to the understanding of the molecular and cellular biology regulating the metastatic niche through the generation and exploitation of novel advanced 3D vascularized organ-specific human models. More in detail, micro and macroscale organ-specific models were engineered and exploited to investigate cancer cell interaction with the organ specific vascular niche in metastasis context. Microscale models provide highly controlled microenvironments where specific biochemical/biophysical stimuli can be applied to condition and analyze cancer cell behavior. At the same time, macroscale systems allow to perform proteomic and transcriptomic analyses on retrieved cells and media, given the more relevant scale of the tissue construct. In this thesis work, 3D vascularized organ-specific micro-environment, such as bone and muscle, were engineered through a tuned approach leading to the progressive addition to the 3D co-culture of all the cells composing the physiological target organ. These models allowed me to demonstrate that direct contact between breast cancer cells and osteoblasts upregulates cancer cell expression of RANKL, which is a key mediator of osteolytic bone metastases. Subsequently I applied microscale models to demonstrate that organ-specific properties of the skeletal muscle inhibit breast cancer metastases and that muscle-secreted molecules including adenosine can be used to impair breast cancer cell extravasation to bone. Mesoscale models of bone and muscle were then coupled to microscale systems to perform genetic analyses on organ-specific endothelial features which could be responsible for the organotropism of cancer metastases. At the same time, I analyzed the role of the vascular niche in the metastatic dissemination, demonstrating the key role played by the CDK5-Talin1-FAKS732 signaling axis in mediating breast cancer cell adhesion to the endothelium and subsequent extravasation to the metastatic site. Immune cells including platelets and neutrophils were then added to the system in order to characterize their role in the process of extravasation. In particular, I analyzed the effect of a known anti-platelet drug on cancer cell dissemination demonstrating that its anti-metastatic properties are due to specific effects on each component of the early metastatic niche. In particular, I found that the drug acts through integrin αIIbβ3 and Src on endothelial cadherin phosphorylation limiting cadherin disassembly and delocalization from the cell membrane. This mechanism is responsible for the reduced extravasation of cancer cells. Overall, these models allowed to analyze with unprecedented level of detail the cellular and molecular mechanisms driving the organ-specific cancer cell extravasation and could pave the way for the development of novel and more effective anti-metastatic therapies.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_712645.pdf
Open Access dal 28/04/2020
Dimensione
18.29 MB
Formato
Adobe PDF
|
18.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/78143
URN:NBN:IT:UNIMIB-78143