Hexosamine Biosynthetic Pathway (HBP) integrates glucose, glutamine, fatty acids (Acetyl-CoA) and nucleotides (uridine-triphosphate) metabolism to synthetize a single metabolite, namely UDP-GlcNAc, whose level depends on the availability of nutrients. In addition it is a fundamental substrate for the enzymes involved in O-/N- protein glycosylation. Since many proteins, engaged in a wide range of cellular functions are glycosylated, alteration of O-/N-linked protein modifications has been associated to various human diseases. In order to restore normal levels of glycosylation, especially in cancer, some modulators have been synthetized. These modulators act either binding enzymes directly involved in transferring of N-acetyl glucosamine (GlcNAc) to proteins or binding the glutamine:fructose-6-phosphate amidotransferase (GFAT) enzyme, the rate-limiting enzyme of HBP. The need to synthetize new modulators rises from the low sensitivity and specificity of these compounds. During my PhD I synthetised and several compounds acting as specific inhibitors of the phosphoacetylglucosamine mutase (PGM3), the enzyme involved in the isomerization of N-acetylglucosamine 6-phosphate (GlcNAc-6P) to N-acetylglucosamine 1-phosphate (GlcNAc-1P) in HBP. PGM3 gene is evolutionary well conserved, suggesting an important role of this enzyme in cell and organismal physiology and its reaction is downstream the salvage pathway (for HBP refuelling). PGM3 inhibition will affect both O- and N-glycosylation processes. The library of possible PGM3 inhibitors has been designed by virtual screening and computational modelling, taking in consideration only chemical structures with high similarity to that of the natural substrate. Such molecules must act as competitive inhibitors for the catalytic pocket of PGM3. According to a computational analysis, based on the affinity between the enzyme and new possible molecules, we screened a mini-library of compounds with the higher docking score, for their ability to induce cell growth arrest and/or cell death on MDA-MB-231 breast cancer cells. Among the different compound tested, FR051 compound resulted to be the more effective, since it was able to induce cancer cell death upon 24-48 hours of cell treatment. For this reason a deeper investigation about the molecular mechanisms activated by FR051 was performed. FR051 is able to block cell proliferation, cell attachment and also cell viability. As expected, these effects are associated to a decrease of N-glycosylation levels. Importantly, all these effects are not reverted by fuelling the salvage pathway by addition of GlcNAc, suggesting a downstream inhibition. As reported in literature accumulation of unfolded proteins in endoplasmic reticulum (ER), due for instance to a decrease of protein N-glycosylation, leads to activation of the so called Unfolded Protein Response. Detailed analysis of UPR activation upon FR051 treatment indicate a reduction of the of the pro-survival branches and an increase of pro-apoptotic pathways. Further analysis indicates a strong increase of ROS, partially due to the action of ER oxidoreductin 1 (Ero1), which is involved in protein disulphide bonds formation. In association to such ROS production and to cell death upon FR051 it is observed a strong Erk1/2 activation. Strikingly, specific inhibition of Erk1/2 activity, almost completely block the cell death induced by FR051 treatment. FR053, the de-acetylated counterpart of FR051, does not influence cell proliferation, viability and cell surface N-glycans. Importantly, FR051 has a weak effect on normal cells and a higher specificity in all the other cancer cells tested as compared to MDA-MB-231 cells. All these findings make FR051 an interesting molecule for cancer cell therapy and the starting point for the synthesis of more efficient molecules.

Il pathway delle esosammine (HBP) è in grado di sintetizzare l’UDP-N-acetilglucosammina (UDP-GlcNAc) mediante l’utilizzo di glucosio, glutammina, Acetil-CoA e uridina tri-fosfato. Un’elevata percentuale di proteine, coinvolte in svariate rivestono un ruolo chiave in diverse patologie. Studi recenti hanno evidenziato come un’alterazione dell’HBP sia in grado di favorire/sostenere il fenotipo tumorale. La progettazione razionale di strumenti chimici, che possano manipolare l’attività di enzimi coinvolti nell’HBP per ripristinare il normale livello di O-/N-glicosilazione, è un “problema” attuale ampiamente affrontato in ambito di ricerca. La maggior parte dei modulatori sino ad ora sintetizzati emula la struttura dei substrati naturali degli enzimi coinvolti sia nel trasferimento diretto delle catene glicosidiche (tunicamicina, BAG, alloxano) sia nelle reazioni precoci del pathway (DON, azaserina). Nonostante i promettenti risultati ottenuti nei primi test effettuati, queste molecole sono poco sensibili e specifiche e in alcuni casi anche tossiche. In funzione di ciò, ho incentrato il dottorato sulla sintesi e caratterizzazione di modulatori dell’enzima Phospho-acetyl glucosammine mutase 3 (PGM3), deputato alla conversione dell’N-acetil glucosammina-6P in N-acetil glucosammina-1P tramite una reazione di isomerizzazione. L’inibizione di PGM3 determinerà l’inibizione di entrambi i tipi di glicosilazione e inoltre l’enzima non sarà più in grado di utilizzare GlcNAc-6P derivante dal “savage pathway” (via di recupero dell’HBP). E’ stata progettata una libreria di possibili inibitori di PGM3, la cui struttura base è simile a quella del substrato e del prodotto naturale dell’enzima (la reazione è reversibile) e le modifiche in posizione C1 e C6 dovrebbero impedire la catalisi enzimatica. Le molecole con maggiore valore di docking score (valutato mediante studi computazionali) sono state testate in vitro utilizzando diverse concentrazioni su un modello di cancro alla mammella triplo negativo (MDA-MB-231) ed è stata valutata la capacità di indurre morte. Da uno screening iniziale, la molecola FR051 ha suscitato molto interesse. Infatti è in grado di indurre distacco cellulare dalla piastra in associazione a una diminuzione delle N-glicosilazioni, a una forte riduzione della vitalità cellulare (attivando l’apoptosi) e influenza negativamente la capacità cellulare di formare nuove colonie. Inoltre, il co-trattamento con dosi crescenti di GlcNAc non è in grado di mitigare gli effetti dell’inibitore, suggerendo che FR051 stia bloccando effettivamente la mutasi. FR051 riduce l’espressione genica e proteica di chaperoni molecolari (pro-survival) e aumenta l’espressione genica di proteine coinvolte nei meccanismi di morte cellulare. Il trattamento con la molecola induce un aumento della fosforilazione di Erk, il quale è noto essere associato al meccanismo di apoptosi. Le analisi di espressione proteica suggeriscono una stabilizzazione post-traduzionale dell’enzima GFAT e di PGM3, invece le analisi di Real Time PCR rivelano una diminuzione dell’espressione genica di entrambi gli enzimi. La variante deacetilata di FR051 non ha alcun effetto né sulla vitalità cellulare né sui livelli di N-glicosilazione. Inoltre linee di tumore alla mammella, con differente background genetico, e di tumore al pancreas sono molto più sensibili al trattamento con FR051, infatti si assiste ad un blocco della proliferazione e morte cellulare a dosi inferiori rispetto a quelle utilizzate per la linea MDA-MB-231. Tutti i risultati ottenuti sino ad ora, rendono FR051 un’interessante molecola e punto di partenza per la sintesi di nuove molecole più stabili ed efficaci.

FR051, a novel Hexosamine Biosynthetic Pathway inhibitor, induces cell death in breast and pancreatic cancer models.

RICCIARDIELLO, FRANCESCA
2017

Abstract

Hexosamine Biosynthetic Pathway (HBP) integrates glucose, glutamine, fatty acids (Acetyl-CoA) and nucleotides (uridine-triphosphate) metabolism to synthetize a single metabolite, namely UDP-GlcNAc, whose level depends on the availability of nutrients. In addition it is a fundamental substrate for the enzymes involved in O-/N- protein glycosylation. Since many proteins, engaged in a wide range of cellular functions are glycosylated, alteration of O-/N-linked protein modifications has been associated to various human diseases. In order to restore normal levels of glycosylation, especially in cancer, some modulators have been synthetized. These modulators act either binding enzymes directly involved in transferring of N-acetyl glucosamine (GlcNAc) to proteins or binding the glutamine:fructose-6-phosphate amidotransferase (GFAT) enzyme, the rate-limiting enzyme of HBP. The need to synthetize new modulators rises from the low sensitivity and specificity of these compounds. During my PhD I synthetised and several compounds acting as specific inhibitors of the phosphoacetylglucosamine mutase (PGM3), the enzyme involved in the isomerization of N-acetylglucosamine 6-phosphate (GlcNAc-6P) to N-acetylglucosamine 1-phosphate (GlcNAc-1P) in HBP. PGM3 gene is evolutionary well conserved, suggesting an important role of this enzyme in cell and organismal physiology and its reaction is downstream the salvage pathway (for HBP refuelling). PGM3 inhibition will affect both O- and N-glycosylation processes. The library of possible PGM3 inhibitors has been designed by virtual screening and computational modelling, taking in consideration only chemical structures with high similarity to that of the natural substrate. Such molecules must act as competitive inhibitors for the catalytic pocket of PGM3. According to a computational analysis, based on the affinity between the enzyme and new possible molecules, we screened a mini-library of compounds with the higher docking score, for their ability to induce cell growth arrest and/or cell death on MDA-MB-231 breast cancer cells. Among the different compound tested, FR051 compound resulted to be the more effective, since it was able to induce cancer cell death upon 24-48 hours of cell treatment. For this reason a deeper investigation about the molecular mechanisms activated by FR051 was performed. FR051 is able to block cell proliferation, cell attachment and also cell viability. As expected, these effects are associated to a decrease of N-glycosylation levels. Importantly, all these effects are not reverted by fuelling the salvage pathway by addition of GlcNAc, suggesting a downstream inhibition. As reported in literature accumulation of unfolded proteins in endoplasmic reticulum (ER), due for instance to a decrease of protein N-glycosylation, leads to activation of the so called Unfolded Protein Response. Detailed analysis of UPR activation upon FR051 treatment indicate a reduction of the of the pro-survival branches and an increase of pro-apoptotic pathways. Further analysis indicates a strong increase of ROS, partially due to the action of ER oxidoreductin 1 (Ero1), which is involved in protein disulphide bonds formation. In association to such ROS production and to cell death upon FR051 it is observed a strong Erk1/2 activation. Strikingly, specific inhibition of Erk1/2 activity, almost completely block the cell death induced by FR051 treatment. FR053, the de-acetylated counterpart of FR051, does not influence cell proliferation, viability and cell surface N-glycans. Importantly, FR051 has a weak effect on normal cells and a higher specificity in all the other cancer cells tested as compared to MDA-MB-231 cells. All these findings make FR051 an interesting molecule for cancer cell therapy and the starting point for the synthesis of more efficient molecules.
27-apr-2017
Italiano
Il pathway delle esosammine (HBP) è in grado di sintetizzare l’UDP-N-acetilglucosammina (UDP-GlcNAc) mediante l’utilizzo di glucosio, glutammina, Acetil-CoA e uridina tri-fosfato. Un’elevata percentuale di proteine, coinvolte in svariate rivestono un ruolo chiave in diverse patologie. Studi recenti hanno evidenziato come un’alterazione dell’HBP sia in grado di favorire/sostenere il fenotipo tumorale. La progettazione razionale di strumenti chimici, che possano manipolare l’attività di enzimi coinvolti nell’HBP per ripristinare il normale livello di O-/N-glicosilazione, è un “problema” attuale ampiamente affrontato in ambito di ricerca. La maggior parte dei modulatori sino ad ora sintetizzati emula la struttura dei substrati naturali degli enzimi coinvolti sia nel trasferimento diretto delle catene glicosidiche (tunicamicina, BAG, alloxano) sia nelle reazioni precoci del pathway (DON, azaserina). Nonostante i promettenti risultati ottenuti nei primi test effettuati, queste molecole sono poco sensibili e specifiche e in alcuni casi anche tossiche. In funzione di ciò, ho incentrato il dottorato sulla sintesi e caratterizzazione di modulatori dell’enzima Phospho-acetyl glucosammine mutase 3 (PGM3), deputato alla conversione dell’N-acetil glucosammina-6P in N-acetil glucosammina-1P tramite una reazione di isomerizzazione. L’inibizione di PGM3 determinerà l’inibizione di entrambi i tipi di glicosilazione e inoltre l’enzima non sarà più in grado di utilizzare GlcNAc-6P derivante dal “savage pathway” (via di recupero dell’HBP). E’ stata progettata una libreria di possibili inibitori di PGM3, la cui struttura base è simile a quella del substrato e del prodotto naturale dell’enzima (la reazione è reversibile) e le modifiche in posizione C1 e C6 dovrebbero impedire la catalisi enzimatica. Le molecole con maggiore valore di docking score (valutato mediante studi computazionali) sono state testate in vitro utilizzando diverse concentrazioni su un modello di cancro alla mammella triplo negativo (MDA-MB-231) ed è stata valutata la capacità di indurre morte. Da uno screening iniziale, la molecola FR051 ha suscitato molto interesse. Infatti è in grado di indurre distacco cellulare dalla piastra in associazione a una diminuzione delle N-glicosilazioni, a una forte riduzione della vitalità cellulare (attivando l’apoptosi) e influenza negativamente la capacità cellulare di formare nuove colonie. Inoltre, il co-trattamento con dosi crescenti di GlcNAc non è in grado di mitigare gli effetti dell’inibitore, suggerendo che FR051 stia bloccando effettivamente la mutasi. FR051 riduce l’espressione genica e proteica di chaperoni molecolari (pro-survival) e aumenta l’espressione genica di proteine coinvolte nei meccanismi di morte cellulare. Il trattamento con la molecola induce un aumento della fosforilazione di Erk, il quale è noto essere associato al meccanismo di apoptosi. Le analisi di espressione proteica suggeriscono una stabilizzazione post-traduzionale dell’enzima GFAT e di PGM3, invece le analisi di Real Time PCR rivelano una diminuzione dell’espressione genica di entrambi gli enzimi. La variante deacetilata di FR051 non ha alcun effetto né sulla vitalità cellulare né sui livelli di N-glicosilazione. Inoltre linee di tumore alla mammella, con differente background genetico, e di tumore al pancreas sono molto più sensibili al trattamento con FR051, infatti si assiste ad un blocco della proliferazione e morte cellulare a dosi inferiori rispetto a quelle utilizzate per la linea MDA-MB-231. Tutti i risultati ottenuti sino ad ora, rendono FR051 un’interessante molecola e punto di partenza per la sintesi di nuove molecole più stabili ed efficaci.
HBP,; INHIBITOR,; CELL; DEATH,; CANCER
CHIARADONNA, FERDINANDO
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_787935.pdf

Open Access dal 28/04/2018

Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/78242
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-78242