A fundamental question in molecular biology is how the organization of the cell nucleus regulates gene expression. In its first steps, gene regulation requires transcription factors (TFs) to scan the genome -among a myriad of DNA random sequences- and find their targets, a process culminating with the association to specific promoters and enhancers. Bacteria have evolved special molecular mechanisms to elude the ‘sequestering’ effect of random DNA and speed up the TF search, making gene regulation extremely efficient. Whether eukaryotic TFs share similar mechanisms, how they find and selects their targets and whether the nucleus define local compartments that may facilitate or exclude their recruitment, is poorly understood. Recent evidence points out that TFs can engage weak and dynamic interactions with the surrounding environment, modulating the search process, but it is unclear what nuclear substructures are involved. In this work we characterize how the human tumor suppressor p53 – an important TF regulating multiple pathways in response to DNA damage such as cell cycle arrest, senescence and apoptosis – searches for its target genes in the cell nucleus, and how nuclear organization controls this process. We apply a novel fluorescence live imaging technology to follow in real-time the search process of p53 through nuclear compartments. The approach combines single molecule tracking (SMT) -to study the dynamic interactions in living nuclei of individual p53 molecules- with multifocal structured-illumination (mSIM), to map distinct compartments in the nucleus at high resolution. We find that p53 ‘perceives’ the conformation of the nuclear environment through contacts mediated by its intrinsically disordered regions (IDRs). These interactions guide p53 through chromatin compartments of different permeability, to efficiently locate p53 targets and induce gene expression.
Un aspetto irrisolto in biologia molecolare è come l'organizzazione del nucleo regoli l'espressione genica. Nelle sue primissime fasi, l’espressione genica richiede che fattori di trascrizione scansionino il genoma -fra una miriade di DNA non specifico- per trovare geni specifici, un processo che culmina con l'associazione a promotori ed enhancer. I batteri hanno sviluppato speciali meccanismi per eludere l'effetto "sequestrante" del DNA non specifico e accelerare la ricerca, rendendo il processo estremamente efficiente. Non è noto se fattori di trascrizione eucariotici condividano meccanismi simili, né se il nucleo formi compartimenti che facilitano il loro reclutamento. Studi recenti in cellule umane suggeriscono che i fattori di trascrizione regolino il loro processo di ricerca attraverso interazioni deboli con l'ambiente circostante, ma non è chiaro con quali compartimenti nucleari. In questo studio caratterizziamo il meccanismo di ricerca di p53, un fattore di trascrizione umano con importanti funzioni antitumorali, che regola molteplici vie di segnalazione a seguito di danno al DNA, come ad esempio l'arresto del ciclo cellulare e l'apoptosi. Per affrontare questo problema applichiamo una nuova tecnologia di imaging in vivo, che permette di seguire in tempo reale il meccanismo di ricerca di p53 in vari compartimenti nucleari. L'approccio combina una tecnica a singola molecola (single molecule tracking, SMT) -per studiare le interazioni di singole molecole di p53 nel nucleo- con un metodo per mappare compartimenti nel nucleo ad alta risoluzione (multifocal structured-illumination, mSIM). I nostri risultati indicano che p53 "percepisce" la conformazione dell'ambiente nucleare attraverso contatti mediati dalle sue regioni intrinsecamente disordinate. Queste interazioni guidano p53 attraverso compartimenti di cromatina a diversa permeabilità, portandola rapidamente sui suoi geni target per regolarne l'espressione.
Ruolo dell'organizzazione nucleare nel meccanismo di ricerca e di regolazione genica mediata da p53
MAZZOCCA, MATTEO
2022
Abstract
A fundamental question in molecular biology is how the organization of the cell nucleus regulates gene expression. In its first steps, gene regulation requires transcription factors (TFs) to scan the genome -among a myriad of DNA random sequences- and find their targets, a process culminating with the association to specific promoters and enhancers. Bacteria have evolved special molecular mechanisms to elude the ‘sequestering’ effect of random DNA and speed up the TF search, making gene regulation extremely efficient. Whether eukaryotic TFs share similar mechanisms, how they find and selects their targets and whether the nucleus define local compartments that may facilitate or exclude their recruitment, is poorly understood. Recent evidence points out that TFs can engage weak and dynamic interactions with the surrounding environment, modulating the search process, but it is unclear what nuclear substructures are involved. In this work we characterize how the human tumor suppressor p53 – an important TF regulating multiple pathways in response to DNA damage such as cell cycle arrest, senescence and apoptosis – searches for its target genes in the cell nucleus, and how nuclear organization controls this process. We apply a novel fluorescence live imaging technology to follow in real-time the search process of p53 through nuclear compartments. The approach combines single molecule tracking (SMT) -to study the dynamic interactions in living nuclei of individual p53 molecules- with multifocal structured-illumination (mSIM), to map distinct compartments in the nucleus at high resolution. We find that p53 ‘perceives’ the conformation of the nuclear environment through contacts mediated by its intrinsically disordered regions (IDRs). These interactions guide p53 through chromatin compartments of different permeability, to efficiently locate p53 targets and induce gene expression.File | Dimensione | Formato | |
---|---|---|---|
20220420_Definitive_Thesis.pdf
accesso aperto
Dimensione
7.99 MB
Formato
Adobe PDF
|
7.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/87275
URN:NBN:IT:UNISR-87275