The liver hosts an immune suppressive environment, favoring metastatic seeding and proliferation of cancer cells. Pharmacological treatments, including immunotherapies, fail in the presence of liver metastases (LMS). Therefore, identifying new interventional tools and key targetable players involved in the immunosuppressive environment is of pivotal importance. Vesicular stomatitis virus G protein-pseudotyped lentiviral vectors (LVs) delivered systemically to mice and non-human primates efficiently transduce liver cells, including resident macrophages, termed Kupffer cells (KCs). Building on these findings, we developed a novel LV-based platform, termed KC-LV, to selectively engineer KCs in vivo with the goal of delivering bio-therapeutics specifically to LMS. To this aim, the KC-LV design exploits a reconstituted mannose receptor c type 1 (MRC1) promoter, active in macrophages, including KCs. To further fine-tune KC specificity, the KC-LV also includes microRNA target (miRT) sequences that prohibit off-target transgene expression in liver sinusoidal endothelial cells (LSECs) and hepatocytes. Upon systemic delivery of the KC-LV, we observed selective transgene expression in KCs which was enhanced in areas surrounding LMS. We then equipped the KC-LV with an IFNα-coding sequence, a cytokine with pleiotropic immune effects. Long-term analysis in mice showed LV dose-dependent, sustained and well-tolerated IFNα expression. To investigate the therapeutic efficacy, we employed different murine models of colorectal carcinoma (CRC)-derived liver metastasis (LMS) including a CRC organoid-based syngeneic mouse model of LMS containing molecular and histopathological hallmarks of the human disease. IFNα LV treatment significantly delayed LMS growth in all tested models reaching a complete response in up to 50 % of treated animals. Single cell omics of LMS from IFNα LV-treated mice showed upregulation of IFNα-responsive genes, macrophage skewing to an antigen presenting (M1-like) polarization state, and expansion as well as reduced exhaustion of LMS-associated antigen specific CD8 T cells. Employing spatial transcriptomics, we found that the interface between LMS and liver parenchymal tissue was the major site of IFNα action, which was associated with enhanced immune activation and antigen presentation. When comparing LMS of treatment responsive to resistant mice, we found accumulation of activated CD8 T-cells in responsive lesions and instead a high number of immunosuppressive T regulatory type 1 (TR1)-like cells in resistant mice. Molecular analyses suggest that TR1-like cell infiltration was associated with increased IL10 signaling in resistant LMS. In summary, we developed an innovative gene-based platform that upon a single well-tolerated intravenous LV infusion rapidly promotes a protective therapeutic response against LMS through enabling immune activation. However, we also found that TR1-like cells might promote tumor immune evasion in presence of IFNα signaling in this setting, suggesting targeting of TR1-like cells when facing resistance to cancer immunotherapies that trigger IFNα signaling.

Il fegato è caratterizzato da un ambiente immunosoppressivo che favorisce l’attecchimento di metastasi e la proliferazione delle cellule tumorali. Trattamenti farmacologici, tra cui anche le immunoterapie, falliscono in presenza di metastasi al fegato (LMS). Ciò rende necessaria e di fondamentale importanza l’identificazione di nuovi approcci terapeutici e la caratterizzazione di bersagli chiave coinvolti nell’ambiente immunosoppressivo. I vettori lentivirali (LV), pseudotipizzati con la proteina G del virus della stomatite vescicolare e somministrati per via sistemica in topi e primati non umani, trasducono in modo efficiente le cellule del fegato, tra cui i macrofagi residenti, chiamati cellule di Kupffer (KCs). A partire da queste osservazioni, abbiamo sviluppato una nuova piattaforma basata su LV, chiamata KC-LV, per ingegnerizzare selettivamente le KC in vivo con l’obbiettivo di trasferire molecole bio-terapeutiche in modo specifico alle LMS. Per questo scopo, il disegno di KC-LV sfrutta un promotore ricostituito del recettore C di tipo 1 del mannosio (MRC1), attivo nei macrofagi, incluse le KCs. Per regolare ulteriormente la specificità per le KC, KC-LV include anche le sequenze target di microRNA che prevengono l’espressione del transgene nelle cellule endoteliali sinusoidali del fegato (LSECs) e negli epatociti. In seguito alla somministrazione sistemica di KC-LV, abbiamo osservato che l’espressione del transgene avviene in modo selettivo nelle KC, ed è particolarmente aumentata nell’area attorno alle LMS. Abbiamo poi equipaggiato KC-LV con una sequenza codificante l’IFNa, una citochina con effetti immunitari pleiotropici. L’analisi a lungo termine nei topi ha mostrato un’espressione di IFNa che dipende dalla dose di LV, prolungata e ben tollerata. Per studiarne l’efficacia terapeutica, abbiamo impiegato diversi modelli murini di LMS derivate da carcinoma del colon-retto (CRC), incluso un modello murino singenico di LMS basato su organoidi di CRC con tratti molecolari e istopatologici caratteristici della malattia umana. Il trattamento con il LV esprimente IFNa ha ritardato in modo significativo la crescita di LMS in tutti i modelli testati, raggiungendo una risposta completa nel 50% degli animali trattati. L’analisi di espressione genica a cellula singola di LMS da topi trattati con LV che esprime IFNa ha mostrato la sovra espressione dei geni che rispondono a IFN, la polarizzazione dei macrofagi verso uno stato di presentazione degli antigeni (M1-simile), associata all’espansione e a un ridotto esaurimento dei linfociti T CD8 antigene-specifici associati alle LMS. Impiegando la trascrittomica spaziale, abbiamo scoperto che l’interfaccia tra le LMS e il tessuto epatico circostante era il sito principale di azione di IFNa, con un incremento di attivazione immunitaria e aumentata presentazione dell’antigene. Confrontando le LMS di topi responsivi al trattamento con quelle di topi resistenti, abbiamo visto un accumulo di linfociti T CD8 attivati nelle lesioni responsive e invece un alto numero di cellule immunosoppressive simili a linfociti T regolatori di tipo 1 (TR1) nei topi resistenti. L’analisi molecolare suggerisce che l’infiltrazione di cellule TR1-simili è associata all’aumento di segnale di IL10 in LMS resistenti al trattamento. Riassumendo, abbiamo sviluppato un’innovativa piattaforma di terapia genica che, in seguito a una singola e ben tollerata infusione intra-vena di LV, promuove una risposta terapeutica protettiva contro le LMS attraverso l’induzione dell’attivazione immunitaria. Al contempo, abbiamo constatato che le cellule TR1-simili in questo contesto possono promuovere l’evasione immunitaria del tumore in presenza della segnalazione di IFNa, suggerendo che le cellule TR-1 simili possano divenire un potenziale nuovo obbiettivo nei casi di resistenza a immunoterapie del cancro che stimolano la segnalazione di IFNa.

L’IFN-alpha secreto da macrofagi ingegnerizzati in vivo riduce le metastasi al fegato e induce l’attivazione di processi contro regolatori che ne limitano l’efficacia

KERZEL, THOMAS
2022

Abstract

The liver hosts an immune suppressive environment, favoring metastatic seeding and proliferation of cancer cells. Pharmacological treatments, including immunotherapies, fail in the presence of liver metastases (LMS). Therefore, identifying new interventional tools and key targetable players involved in the immunosuppressive environment is of pivotal importance. Vesicular stomatitis virus G protein-pseudotyped lentiviral vectors (LVs) delivered systemically to mice and non-human primates efficiently transduce liver cells, including resident macrophages, termed Kupffer cells (KCs). Building on these findings, we developed a novel LV-based platform, termed KC-LV, to selectively engineer KCs in vivo with the goal of delivering bio-therapeutics specifically to LMS. To this aim, the KC-LV design exploits a reconstituted mannose receptor c type 1 (MRC1) promoter, active in macrophages, including KCs. To further fine-tune KC specificity, the KC-LV also includes microRNA target (miRT) sequences that prohibit off-target transgene expression in liver sinusoidal endothelial cells (LSECs) and hepatocytes. Upon systemic delivery of the KC-LV, we observed selective transgene expression in KCs which was enhanced in areas surrounding LMS. We then equipped the KC-LV with an IFNα-coding sequence, a cytokine with pleiotropic immune effects. Long-term analysis in mice showed LV dose-dependent, sustained and well-tolerated IFNα expression. To investigate the therapeutic efficacy, we employed different murine models of colorectal carcinoma (CRC)-derived liver metastasis (LMS) including a CRC organoid-based syngeneic mouse model of LMS containing molecular and histopathological hallmarks of the human disease. IFNα LV treatment significantly delayed LMS growth in all tested models reaching a complete response in up to 50 % of treated animals. Single cell omics of LMS from IFNα LV-treated mice showed upregulation of IFNα-responsive genes, macrophage skewing to an antigen presenting (M1-like) polarization state, and expansion as well as reduced exhaustion of LMS-associated antigen specific CD8 T cells. Employing spatial transcriptomics, we found that the interface between LMS and liver parenchymal tissue was the major site of IFNα action, which was associated with enhanced immune activation and antigen presentation. When comparing LMS of treatment responsive to resistant mice, we found accumulation of activated CD8 T-cells in responsive lesions and instead a high number of immunosuppressive T regulatory type 1 (TR1)-like cells in resistant mice. Molecular analyses suggest that TR1-like cell infiltration was associated with increased IL10 signaling in resistant LMS. In summary, we developed an innovative gene-based platform that upon a single well-tolerated intravenous LV infusion rapidly promotes a protective therapeutic response against LMS through enabling immune activation. However, we also found that TR1-like cells might promote tumor immune evasion in presence of IFNα signaling in this setting, suggesting targeting of TR1-like cells when facing resistance to cancer immunotherapies that trigger IFNα signaling.
13-mag-2022
Inglese
Il fegato è caratterizzato da un ambiente immunosoppressivo che favorisce l’attecchimento di metastasi e la proliferazione delle cellule tumorali. Trattamenti farmacologici, tra cui anche le immunoterapie, falliscono in presenza di metastasi al fegato (LMS). Ciò rende necessaria e di fondamentale importanza l’identificazione di nuovi approcci terapeutici e la caratterizzazione di bersagli chiave coinvolti nell’ambiente immunosoppressivo. I vettori lentivirali (LV), pseudotipizzati con la proteina G del virus della stomatite vescicolare e somministrati per via sistemica in topi e primati non umani, trasducono in modo efficiente le cellule del fegato, tra cui i macrofagi residenti, chiamati cellule di Kupffer (KCs). A partire da queste osservazioni, abbiamo sviluppato una nuova piattaforma basata su LV, chiamata KC-LV, per ingegnerizzare selettivamente le KC in vivo con l’obbiettivo di trasferire molecole bio-terapeutiche in modo specifico alle LMS. Per questo scopo, il disegno di KC-LV sfrutta un promotore ricostituito del recettore C di tipo 1 del mannosio (MRC1), attivo nei macrofagi, incluse le KCs. Per regolare ulteriormente la specificità per le KC, KC-LV include anche le sequenze target di microRNA che prevengono l’espressione del transgene nelle cellule endoteliali sinusoidali del fegato (LSECs) e negli epatociti. In seguito alla somministrazione sistemica di KC-LV, abbiamo osservato che l’espressione del transgene avviene in modo selettivo nelle KC, ed è particolarmente aumentata nell’area attorno alle LMS. Abbiamo poi equipaggiato KC-LV con una sequenza codificante l’IFNa, una citochina con effetti immunitari pleiotropici. L’analisi a lungo termine nei topi ha mostrato un’espressione di IFNa che dipende dalla dose di LV, prolungata e ben tollerata. Per studiarne l’efficacia terapeutica, abbiamo impiegato diversi modelli murini di LMS derivate da carcinoma del colon-retto (CRC), incluso un modello murino singenico di LMS basato su organoidi di CRC con tratti molecolari e istopatologici caratteristici della malattia umana. Il trattamento con il LV esprimente IFNa ha ritardato in modo significativo la crescita di LMS in tutti i modelli testati, raggiungendo una risposta completa nel 50% degli animali trattati. L’analisi di espressione genica a cellula singola di LMS da topi trattati con LV che esprime IFNa ha mostrato la sovra espressione dei geni che rispondono a IFN, la polarizzazione dei macrofagi verso uno stato di presentazione degli antigeni (M1-simile), associata all’espansione e a un ridotto esaurimento dei linfociti T CD8 antigene-specifici associati alle LMS. Impiegando la trascrittomica spaziale, abbiamo scoperto che l’interfaccia tra le LMS e il tessuto epatico circostante era il sito principale di azione di IFNa, con un incremento di attivazione immunitaria e aumentata presentazione dell’antigene. Confrontando le LMS di topi responsivi al trattamento con quelle di topi resistenti, abbiamo visto un accumulo di linfociti T CD8 attivati nelle lesioni responsive e invece un alto numero di cellule immunosoppressive simili a linfociti T regolatori di tipo 1 (TR1) nei topi resistenti. L’analisi molecolare suggerisce che l’infiltrazione di cellule TR1-simili è associata all’aumento di segnale di IL10 in LMS resistenti al trattamento. Riassumendo, abbiamo sviluppato un’innovativa piattaforma di terapia genica che, in seguito a una singola e ben tollerata infusione intra-vena di LV, promuove una risposta terapeutica protettiva contro le LMS attraverso l’induzione dell’attivazione immunitaria. Al contempo, abbiamo constatato che le cellule TR1-simili in questo contesto possono promuovere l’evasione immunitaria del tumore in presenza della segnalazione di IFNa, suggerendo che le cellule TR-1 simili possano divenire un potenziale nuovo obbiettivo nei casi di resistenza a immunoterapie del cancro che stimolano la segnalazione di IFNa.
immuno oncologia; terapia genetica; metastasi epatiche
NALDINI, LUIGI
Università Vita-Salute San Raffaele
File in questo prodotto:
File Dimensione Formato  
PhD Thesis_final_Thomas Kerzel_signed.pdf

Open Access dal 14/05/2023

Dimensione 4.91 MB
Formato Adobe PDF
4.91 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/87298
Il codice NBN di questa tesi è URN:NBN:IT:UNISR-87298