Mutations in genes expressed by hepatocytes cause a plethora of monogenic diseases, which may be treated by liver directed in vivo gene therapy. Adeno-associated viral (AAV) vectors represent the most advanced platform to reach this goal. However, the mostly episomal conformation of AAV vectors in target cells causes their dilution during liver growth, challenging treatment of pediatric patients. In contrast, lentiviral vectors (LV) integrate in the genome and are maintained upon cell proliferation. We previously showed stable LV-mediated liver gene transfer in neonatal and adult mice, dogs and non-human primates. Here we applied for the first time this strategy to a cell autonomous disease, familial hypercholesterolemia (FH), which is due to mutations in the low-density lipoprotein receptor (LDLR) gene. Despite LDLR is reported as the main receptor of VSV.G, used to pseudotype LV, we observed efficient gene transfer in ldlr-/- mice by VSV.G LV, with even higher transgene output compared to normal mice. We obtained instead very low infectious titers when producing LDLR encoding VSV.G LV, due to LDLR-VSV.G interaction and possible re-infection of producer cells. We solved the issue by changing pseudotype, or by avoiding LDLR expression during LV production. With these upgraded LV, we treated juvenile ldlr-/- mice and obtained long term LDL normalization, maintained even following a challenge with a high cholesterol diet. Moving to adult mice, we did not show phenotypic correction because of reduced transduction efficiency. Enhancing gene transfer efficiency is crucial for facing new diseases where most of the liver mass must be corrected, but also for reducing doses when approaching non-cell autonomous diseases like hemophilia, a disease due to lack of coagulation factors. With this in mind, we tested strategies to increase corrected liver mass a posteriori (inducing a selective advantage of corrected towards non-corrected hepatocytes) or a priori. To increase potency a priori, we identified several procedures (fasting, inhibition of interferon or proteasome pathways) to implement before LV administration, that allowed increase LV-mediated in vivo gene transfer to hepatocytes. When fasting and proteasome inhibition were used in combination, we achieved >11-fold higher gene transfer and transgene output. These findings corroborate the rational of using LV for the treatment of diseases that are life-threatening in childhood and shed light on molecular pathways that could be targeted to enhance the potency of LV-mediated in vivo gene transfer to hepatocytes.
Mutazioni in geni espressi dagli cpatociti detenrinano numerose malattie inonogeniclie, che potrebbero essei'e trattate tramite terapia gcnica al fegato. in vivo. I vettori adeno- associati (VAA) sono i più utilizzati pcr questo scopo. Tuttavia, la conformazione principalmente episomale che gli AVV assumono nelle cellule bersaglio ne causa la diluizione durante la crescita del fegato, impedendone l'applicazione a pazienti pediatrici. Al contrario, i vettoi i lentivirali (VL) integrano nel geiaoma e vengono mantenuti in seguito a divisione cellulare. In passato abbiamo mostrato stablle trasfei'iiuento genico al fegato tramite VL in topi neonati e adulti, cani e primati non umani. In questo lavoro abbiamo applicato per la prima volta questa strategia a una malattia metabolica, 1’ipercolesteioleniia familiare, dovuta a mutazioni nel gene delle lipoproteine a bassa densità (LDLR). Nonostante LDLR venga ritenuto il principale recettore della glicoproteina dcl vn‘us della stoiiiatite vescicolare (VSV.G), utilizzato per pseudotipizzare i VL, abbiamo osservato un trasf‘eritnento genico efficiente in topi ldlr° tramite VSV.G VL, con un itna quantità di transgene anche supei iore rispetto a quella di topi di controllo. Abbiamo invece osservato titoli infettivi molto bassi producendo VSV.G VL codillcanti LDLR, per via dell’inleiazione LDLR-VSV.G e della possibile re-infezione delle cellule produttrici. Abbiamo i‘iso1to il problema cambiando pseudotipo ed evit‹indo l'espressione di LDLR durante la produzione di VL. Con questi VL migliorati, abbiamo trattato topi giovani ldlr° ottenendo normalizzazione di LDL, mantenute anche nutrendo i topi con dieta ad alto contenuto di colesterolo. Trattando i topi adulti, non abbiamo ottenuto correzionc fenotipica, per via di lidotta efficienza di trasferimento genico. Aumentare l'efficienza di ti aslcriniento genico é cruciale sia per approcciarsi a malattie in cui la maggior parte della massa epatica deve essere corretta, sia per ridurre le dosi quando si fronteggiano malattie ad oggi più facilmente trattabili con terapia gcnica, conte l'cinofilia, malattia dovuta alla mancanza di fattori della coagulazione. A questo scopo, abbiamo tentato di aumentare la massa epatica coi i etta ri posleriori (conferendo un vantaggio selettivo agli epatociti corretti rispetto ai non- corretti) o a priori. Per‘ aumentarne la potenza ri priori, abbiamo identificato alcune procedure (digiuno. inibizione di vie metaboliche di interfcrone e proteasoma) da cffettuai‘e prima dell’iniezione di VL. Quando digiuno e inibizione di proteasoma sono stati tentati in combinazione prima di VL, ld Quantità di transgene è stata 11 -volte maggior e rispetto aa quella dei controlli. Queste scoperte avvalorano I’utilizzo di VL per il trattai tento di gravi malattie genetiche a insoi'genza pediatrica e mettono in luce vie molecolari da bersagliare per aumentare la potenza di trasferimento genico agli epatociti tramite VL.
AUMENTO DELL'EFFICIENZA DI TRASFERIMENTO GENICO AGLI EPATOCITI IN SEGUITO A TERAPIA GENICA IN VIVO CON VETTORI LENTIVIRALI E APPLICAZIONE A IPERCOLESTEROLEMIA FAMILIARE
CANEPARI, CESARE
2023
Abstract
Mutations in genes expressed by hepatocytes cause a plethora of monogenic diseases, which may be treated by liver directed in vivo gene therapy. Adeno-associated viral (AAV) vectors represent the most advanced platform to reach this goal. However, the mostly episomal conformation of AAV vectors in target cells causes their dilution during liver growth, challenging treatment of pediatric patients. In contrast, lentiviral vectors (LV) integrate in the genome and are maintained upon cell proliferation. We previously showed stable LV-mediated liver gene transfer in neonatal and adult mice, dogs and non-human primates. Here we applied for the first time this strategy to a cell autonomous disease, familial hypercholesterolemia (FH), which is due to mutations in the low-density lipoprotein receptor (LDLR) gene. Despite LDLR is reported as the main receptor of VSV.G, used to pseudotype LV, we observed efficient gene transfer in ldlr-/- mice by VSV.G LV, with even higher transgene output compared to normal mice. We obtained instead very low infectious titers when producing LDLR encoding VSV.G LV, due to LDLR-VSV.G interaction and possible re-infection of producer cells. We solved the issue by changing pseudotype, or by avoiding LDLR expression during LV production. With these upgraded LV, we treated juvenile ldlr-/- mice and obtained long term LDL normalization, maintained even following a challenge with a high cholesterol diet. Moving to adult mice, we did not show phenotypic correction because of reduced transduction efficiency. Enhancing gene transfer efficiency is crucial for facing new diseases where most of the liver mass must be corrected, but also for reducing doses when approaching non-cell autonomous diseases like hemophilia, a disease due to lack of coagulation factors. With this in mind, we tested strategies to increase corrected liver mass a posteriori (inducing a selective advantage of corrected towards non-corrected hepatocytes) or a priori. To increase potency a priori, we identified several procedures (fasting, inhibition of interferon or proteasome pathways) to implement before LV administration, that allowed increase LV-mediated in vivo gene transfer to hepatocytes. When fasting and proteasome inhibition were used in combination, we achieved >11-fold higher gene transfer and transgene output. These findings corroborate the rational of using LV for the treatment of diseases that are life-threatening in childhood and shed light on molecular pathways that could be targeted to enhance the potency of LV-mediated in vivo gene transfer to hepatocytes.File | Dimensione | Formato | |
---|---|---|---|
PHD TESI definitiva_CC_27.pdf
Open Access dal 19/04/2024
Dimensione
4.21 MB
Formato
Adobe PDF
|
4.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/87558
URN:NBN:IT:UNISR-87558