This work shows that it is possible to fabricate phosphate-based planar wave-guides activated by rare earth ions both by sol-gel and RF-sputtering techniques. The objective of this thesis has been to evaluate various methodologies for fab-rication Phosphorous-based planar waveguides. In this context sol-gel and RF-sputtering techniques for planar waveguides fabrication has been investigated. RF-process has been optimized. In case of sol-gel technique a further thermo-dynamical study is required. Each of technique has drawbacks, in sol-gel method the principal question is related to the kinetics of the reaction, since it is too fast, to better control of the reaction rates, and better adjustment of the technological films fabrication, which effects on spectroscopic properties of the waveguiding systems: losses, refractive index. In case of RF-sputtering is no-ticeable that the refractive index is low, and the losses are less than 0.2 dB/cm, however the multicomponent target material increase the complexity of the structure.

Fabrication and characterization of Phosphate-based planar waveguides activated by Er3+ ions

Vasilchenko, Iustyna
2016

Abstract

This work shows that it is possible to fabricate phosphate-based planar wave-guides activated by rare earth ions both by sol-gel and RF-sputtering techniques. The objective of this thesis has been to evaluate various methodologies for fab-rication Phosphorous-based planar waveguides. In this context sol-gel and RF-sputtering techniques for planar waveguides fabrication has been investigated. RF-process has been optimized. In case of sol-gel technique a further thermo-dynamical study is required. Each of technique has drawbacks, in sol-gel method the principal question is related to the kinetics of the reaction, since it is too fast, to better control of the reaction rates, and better adjustment of the technological films fabrication, which effects on spectroscopic properties of the waveguiding systems: losses, refractive index. In case of RF-sputtering is no-ticeable that the refractive index is low, and the losses are less than 0.2 dB/cm, however the multicomponent target material increase the complexity of the structure.
2016
Inglese
Ferrari, Maurizio
Chiasera, Alessandro
Università degli studi di Trento
TRENTO
201
File in questo prodotto:
File Dimensione Formato  
Vasilchenko_PhD_Thesis_2016.pdf

accesso aperto

Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/89892
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-89892