Coalgebras of measurable spaces are of interest in probability theory as a formalization of Labelled Markov Processes (LMPs). We discuss some general facts related to the notions of bisimulation and cocongruence on these systems, providing a faithful characterization of bisimulation on LMPs on generic measurable spaces. This has been used to prove that bisimilarity on single LMPs is an equivalence, without assuming the state space to be analytic. As the second main contribution, we introduce the first specification rule format to define well-behaved composition operators for LMPs. This allows one to define process description languages on LMPs which are always guaranteed to have a fully-abstract semantics.

Generalized labelled Markov processes, coalgebraically

BACCI, Giorgio
2013

Abstract

Coalgebras of measurable spaces are of interest in probability theory as a formalization of Labelled Markov Processes (LMPs). We discuss some general facts related to the notions of bisimulation and cocongruence on these systems, providing a faithful characterization of bisimulation on LMPs on generic measurable spaces. This has been used to prove that bisimilarity on single LMPs is an equivalence, without assuming the state space to be analytic. As the second main contribution, we introduce the first specification rule format to define well-behaved composition operators for LMPs. This allows one to define process description languages on LMPs which are always guaranteed to have a fully-abstract semantics.
27-mag-2013
Inglese
Markov processes; Bisimulation; Coalgebras; Structural operational semantics; Behavioral distances
MICULAN, Marino
Università degli Studi di Udine
Udine
File in questo prodotto:
File Dimensione Formato  
10990_257_bacciPhDthesis.pdf

accesso aperto

Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/90224
Il codice NBN di questa tesi è URN:NBN:IT:UNIUD-90224