In our thesis we study several modern problems in the framework of dynamical systems, giving results of qualitative nature thanks to the application of different topological-based methods. We take into account general systems of ordinary differential equations and determine some conditions for the existence and multiplicity of periodic solutions or for the uniform persistence of the associated flow as well as a thorough characterisation of the many types of solutions we encounter. More in detail, we benefit from the theory of dynamical systems and from the two main tools it provides: fixed point Theorems and generalised Lyapunov functions methods for stability. The Poincaré-Birkhoff fixed point Theorem is applied to the Poincaré map associated with the ODEs systems in order to deduce the existence of periodic solutions. On the side of multiplicity the bend-twist maps approach, based on the Poincaré-Miranda Theorem, reaches better results with a payback in term of control of the nonlinearity via a weight function. The Stretching Along the Paths method further improves the outcome and allows to detect symbolic chaos by means of its topological core, Smale’s horseshoe. On the side of Lyapunov function methods, some general Theorems on persistence are applied to different ecological models, and by means of a generalised Lyapunov function the conditions for persistence can be related to the classical ones coming from the biological literature, and in several cases improve them. The first part (Chapter 1) of the thesis is devoted to the study of a general class of ODEs with sign-changing nonlinearity. Two approaches are pursued: the first relies on Poincaré-Birkhoff Theorem and returns the existence of two periodic solutions for the equation, but requires the global continuability of solutions; the second is based on the Stretching Along the Paths method and gains the existence of four periodic solutions, without the need to ask for the solutions to be defined globally but imposing certain conditions on the function that weights the nonlinearity. We discuss the differences between the approaches and we infer also a complex behaviour of chaotic type. The second part (Chapters 2 and 3) deals with applications coming from celestial mechanics and ecology. In Chapter 2 the planar N-centre problem is analysed via both variational and topological tools: this innovative approach allows to discover rich families of zero-energy solutions of different type; scattering, periodic, semibounded and bounded. These families strictly contain the results in the literature and expand them, allowing for admissible self-intersection of the orbits. In Chapter 3 we briefly present some results on persistence in semidynamical systems before taking into account two epidemiological models studied only by numerical means: we prove rigorously the uniform persistence of their associated flows on the positive cone. In the second part of the Chapter we link uniform persistence and existence of periodic solutions thanks to some dissipativity arguments and the deployment of a fixed point theorem together with a topological degree property. The Appendixes deal with the stability analysis of the models of Chapter 3.
Nel nostro lavoro di tesi abbiamo studiato diversi problemi di interesse attuale nel contesto dei sistemi dinamici, producendo risultati di natura qualitativa grazie all’applicazione di vari metodi topologici. Abbiamo preso in considerazione sistemi generali di equazioni differenziali ordinarie e determinato le condizioni per l’esistenza e la molteplicità di soluzioni periodiche, oppure per la persistenza del flusso associato, come anche una caratterizzazione dei diversi tipi di soluzione ottenuti. Più nel dettaglio, abbiamo beneficiato della teoria dei sistemi dinamici e dei due importanti strumenti che fornisce: teoremi di punto fisso e metodi delle funzioni generalizzate di Lyapunov per la stabilità. Il teorema di punto fisso di Poincaré-Birkhoff viene applicato alla mappa di Poincaré associata a un sistema di EDO in modo da ottenere l’esistenza di soluzioni periodiche. Riguardo alla molteplicità un approccio del tipo “bend-twist map” basato sul teorema di Poincaré-Miranda raggiunge risultati migliori al costo di condizioni aggiuntive sul peso della nonlinearità. Il metodo “ Stretching Along the Paths” migliora ulteriormente il risultato e permette inoltre di rilevare dinamiche simboliche attraverso il suo nucleo topologico, che risiede nel ferro di cavallo di Smale. Riguardo ai metodi con funzioni di Lyapunov, abbiamo applicato alcuni teoremi riguardanti la persistenza a multipli modelli biologici e proprio grazie alle funzioni generalizzate di Lyapunov siamo riusciti a correlare le nostre condizioni per la persistenza a quelle presenti in letteratura, e in certi casi a migliorarle. La prima parte della tesi (Capitolo 1) è dedicata allo studio di una classe molto generale di EDO con una nonlinearità che cambia segno. Abbiamo seguito due approcci: il primo si basa sul teorema di Poincaré-Birkhoff e restituisce l’esistenza di due soluzioni periodiche dell’equazione a patto di richiedere la continuabilità globale delle soluzioni; il secondo si basa sul metodo “Stretching Along the Paths” e ottiene l’esistenza di quattro soluzioni periodiche, senza necessità di ben definire globalmente le soluzioni ma premettendo certe condizioni sulla funzione peso della nonlinearità. Abbiamo confrontato i due approcci e evidenziato le differenze, discutendo brevemente anche della dinamica caotica. La seconda parte della tesi (Capitoli 2 e 3) tratta applicazioni provenienti dalla meccanica celeste e dall’ambito biologico. Nel Capitolo 2 analizziamo il problema degli N-centri attraverso strumenti variazionali e topologici: questo approccio ci permette di svelare ricche classi di soluzioni paraboliche di diverso genere: “scattering”, periodiche, semilimitate e limitate. Queste classi includono le precedenti individuate dalla letteratura e le ampliano, ammettendo alcune auto-intersezioni delle orbite. Nel Capitolo 3 richiamiamo brevemente alcuni risultati sulla persistenza prima di dimostrarla rigorosamente su due modelli epidemiologici finora studiati solo numericamente. Nella seconda parte del Capitolo colleghiamo i concetti di persistenza e di esistenza di soluzioni periodiche attraverso la dissipatività e un teorema di punto fisso unito a una particolare proprietà proveiente dalla teoria del grado topologico. Le Appendici trattano la stabilità dei modelli presentati in precedenza.
Aspetti qualitativi dei sistemi dinamici. Soluzioni periodiche, orbite celesti e persistenza
DONDÈ, TOBIA
2019
Abstract
In our thesis we study several modern problems in the framework of dynamical systems, giving results of qualitative nature thanks to the application of different topological-based methods. We take into account general systems of ordinary differential equations and determine some conditions for the existence and multiplicity of periodic solutions or for the uniform persistence of the associated flow as well as a thorough characterisation of the many types of solutions we encounter. More in detail, we benefit from the theory of dynamical systems and from the two main tools it provides: fixed point Theorems and generalised Lyapunov functions methods for stability. The Poincaré-Birkhoff fixed point Theorem is applied to the Poincaré map associated with the ODEs systems in order to deduce the existence of periodic solutions. On the side of multiplicity the bend-twist maps approach, based on the Poincaré-Miranda Theorem, reaches better results with a payback in term of control of the nonlinearity via a weight function. The Stretching Along the Paths method further improves the outcome and allows to detect symbolic chaos by means of its topological core, Smale’s horseshoe. On the side of Lyapunov function methods, some general Theorems on persistence are applied to different ecological models, and by means of a generalised Lyapunov function the conditions for persistence can be related to the classical ones coming from the biological literature, and in several cases improve them. The first part (Chapter 1) of the thesis is devoted to the study of a general class of ODEs with sign-changing nonlinearity. Two approaches are pursued: the first relies on Poincaré-Birkhoff Theorem and returns the existence of two periodic solutions for the equation, but requires the global continuability of solutions; the second is based on the Stretching Along the Paths method and gains the existence of four periodic solutions, without the need to ask for the solutions to be defined globally but imposing certain conditions on the function that weights the nonlinearity. We discuss the differences between the approaches and we infer also a complex behaviour of chaotic type. The second part (Chapters 2 and 3) deals with applications coming from celestial mechanics and ecology. In Chapter 2 the planar N-centre problem is analysed via both variational and topological tools: this innovative approach allows to discover rich families of zero-energy solutions of different type; scattering, periodic, semibounded and bounded. These families strictly contain the results in the literature and expand them, allowing for admissible self-intersection of the orbits. In Chapter 3 we briefly present some results on persistence in semidynamical systems before taking into account two epidemiological models studied only by numerical means: we prove rigorously the uniform persistence of their associated flows on the positive cone. In the second part of the Chapter we link uniform persistence and existence of periodic solutions thanks to some dissipativity arguments and the deployment of a fixed point theorem together with a topological degree property. The Appendixes deal with the stability analysis of the models of Chapter 3.File | Dimensione | Formato | |
---|---|---|---|
Dond?_PhD_ThesisPDFA.pdf
accesso aperto
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/90793
URN:NBN:IT:UNIUD-90793