The main purpose of this thesis is to combine the categorical approach to logic given by the study of doctrines, with the universal algebraic techniques given by the theory of the pseudo-monads and pseudo-distributive laws. Every completions of doctrines is then formalized by a pseudo-monad, and then combinations of these are studied by the analysis of the pseudo-distributive laws. The starting point are the works of Maietti and Rosolini, in which they describe three completions for elementary doctrines: the first which adds full comprehensions, the second comprehensive diagonals, and the third quotients. Then we determine the existential completion of a primary doctrine, and we prove that the 2-monad obtained from it is lax-idempotent, and that the 2-category of existential doctrines is isomorphic to the 2-category of algebras for this 2-monad. We also show that the existential completion of an elementary doctrine is again elementary and we extend the notion of exact completion of an elementary existential doctrine to an arbitrary elementary doctrine. Finally we present the elementary completion for a primary doctrine whose base category has finite limits. In particular we prove that, using a general results about unification for first order languages, we can easily add finite limits to a syntactic category, and then apply the elementary completion for syntactic doctrines. We conclude with a complete description of elementary completion for primary doctrine whose base category is the free product completion of a discrete category, and we show that the 2-monad constructed from the 2-adjunction is lax-idempotent.

Existential completion and pseudo-distributive laws: an algebraic approach to the completion of doctrines

Trotta, Davide
2019

Abstract

The main purpose of this thesis is to combine the categorical approach to logic given by the study of doctrines, with the universal algebraic techniques given by the theory of the pseudo-monads and pseudo-distributive laws. Every completions of doctrines is then formalized by a pseudo-monad, and then combinations of these are studied by the analysis of the pseudo-distributive laws. The starting point are the works of Maietti and Rosolini, in which they describe three completions for elementary doctrines: the first which adds full comprehensions, the second comprehensive diagonals, and the third quotients. Then we determine the existential completion of a primary doctrine, and we prove that the 2-monad obtained from it is lax-idempotent, and that the 2-category of existential doctrines is isomorphic to the 2-category of algebras for this 2-monad. We also show that the existential completion of an elementary doctrine is again elementary and we extend the notion of exact completion of an elementary existential doctrine to an arbitrary elementary doctrine. Finally we present the elementary completion for a primary doctrine whose base category has finite limits. In particular we prove that, using a general results about unification for first order languages, we can easily add finite limits to a syntactic category, and then apply the elementary completion for syntactic doctrines. We conclude with a complete description of elementary completion for primary doctrine whose base category is the free product completion of a discrete category, and we show that the 2-monad constructed from the 2-adjunction is lax-idempotent.
17-dic-2019
Inglese
Zunino, Roberto
Università degli studi di Trento
Trento
179
File in questo prodotto:
File Dimensione Formato  
Tesi.pdf

accesso aperto

Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/91591
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-91591