Knowing how to exploit unlabeled data is a fundamental problem in machine learning. This dissertation provides contributions in different contexts, including semi-supervised learning, positive unlabeled learning and representation learning. In particular, we ask (i) whether is possible to learn a classifier in the context of limited data, (ii) whether is possible to scale existing models for positive unlabeled learning, and (iii) whether is possible to train a deep generative model with a single minimization problem.

Towards Uncovering the True Use of Unlabeled Data in Machine Learning

Sansone, Emanuele
2018

Abstract

Knowing how to exploit unlabeled data is a fundamental problem in machine learning. This dissertation provides contributions in different contexts, including semi-supervised learning, positive unlabeled learning and representation learning. In particular, we ask (i) whether is possible to learn a classifier in the context of limited data, (ii) whether is possible to scale existing models for positive unlabeled learning, and (iii) whether is possible to train a deep generative model with a single minimization problem.
2018
Inglese
De Natale, Francesco
Università degli studi di Trento
TRENTO
86
File in questo prodotto:
File Dimensione Formato  
PhD-Thesis.pdf

accesso aperto

Dimensione 8.27 MB
Formato Adobe PDF
8.27 MB Adobe PDF Visualizza/Apri
Disclaimer_Sansone.pdf

accesso solo da BNCF e BNCR

Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/91971
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-91971