Knowing how to exploit unlabeled data is a fundamental problem in machine learning. This dissertation provides contributions in different contexts, including semi-supervised learning, positive unlabeled learning and representation learning. In particular, we ask (i) whether is possible to learn a classifier in the context of limited data, (ii) whether is possible to scale existing models for positive unlabeled learning, and (iii) whether is possible to train a deep generative model with a single minimization problem.
Towards Uncovering the True Use of Unlabeled Data in Machine Learning
Sansone, Emanuele
2018
Abstract
Knowing how to exploit unlabeled data is a fundamental problem in machine learning. This dissertation provides contributions in different contexts, including semi-supervised learning, positive unlabeled learning and representation learning. In particular, we ask (i) whether is possible to learn a classifier in the context of limited data, (ii) whether is possible to scale existing models for positive unlabeled learning, and (iii) whether is possible to train a deep generative model with a single minimization problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PhD-Thesis.pdf
accesso aperto
Dimensione
8.27 MB
Formato
Adobe PDF
|
8.27 MB | Adobe PDF | Visualizza/Apri |
Disclaimer_Sansone.pdf
accesso solo da BNCF e BNCR
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/91971
Il codice NBN di questa tesi è
URN:NBN:IT:UNITN-91971