The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu.

A network medicine approach on microarray and Next generation Sequencing data

Filosi, Michele
2014

Abstract

The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu.
2014
Inglese
Furlanello, Cesare
Jurman, Giuseppe
Università degli studi di Trento
TRENTO
142
File in questo prodotto:
File Dimensione Formato  
thesi_main.pdf

accesso solo da BNCF e BNCR

Dimensione 8.84 MB
Formato Adobe PDF
8.84 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/92750
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-92750