The use of health-promoting lactic acid bacteria (LAB) strains as starter or adjunct cultures for dairy productions could facilitate the in situ bio-synthesis of bioactive molecules during the fermentation process, increasing the interest towards dairy products as multifunctional foods. Currently, there is much research about genotypic and technological characterization of raw milk cheeses microbiota, which is rich in biodiversity and could be exploited for improving the sensory attributes and add healthy benefits to the cheese. Traditional Mountain (TM) cheese is made from raw cow’s milk and spontaneously fermented in small farms called “Malga” located in the alpine areas of Trentino region. For the first time, the microbial population of TM-cheese has been characterized in order to select cocci and non-starter LAB suitable for developing new starter or adjunct cultures, respectively. Samples (n = 120) of milk, curd and cheese at different ripening times (24 hours, 1 month and 7 months) were enumerated in selective culture media. Mesophilic and thermophilic cocci dominated during the first 24 hours following production, and mesophilic lactobacilli were dominant at the end of ripening. Six hundred and forty colonies were isolated from curd and cheese 24 hours following production, and 95 more colonies were isolated from cheese after 7 months of ripening. All isolates were genotypically characterized by Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) with two primers, species-specific PCR and partial sequencing of 16S rRNA gene. Cocci clustered in 231 biotypes belonging to 16 different species, and non-starter LAB (NSLAB) clustered in 70 biotypes belonging to 13 different species. Lactococcus lactis, Streptococcus thermophilus and Enterococcus faecalis were dominant in curd and 24h-cheese; Pediococcus pentosaceus and Lactobacillus paracasei were the main species at the end of ripening. The phenotypic, technological and health-promoting activities of all strains were investigated. In particular, lactococci, streptococci and enterococci were tested for their acidification and proteolytic activity, ability to growth at not optimal temperatures, acetoin production, development of olfactory flavour notes, autolysis rate and ability to inhibit the growth of coliforms. Forty percent of enterococci showed the ability to inhibit raw milk resident coliforms in vitro, but they were excluded as possible starters, owing to the presence of associated risk factors. Among lactococci and streptococci, 4 Lc. lactis subsp. lactis and 2 Sc. thermophilus were fast acidifiers, produced pleasant flavours, and were subjected to the freeze-drying stability test. Lc. lactis subsp. lactis 68 and Sc. thermophilus 93 showed the best properties and might be appropriate for cheese production. NSLAB strains were tested for their growth properties, carbohydrate metabolism, acidifying ability, proteolytic and lipolytic activities, acetoin production, amino-peptidase activity (AP) and biogenic amines production. Concerning the health-promoting properties, the bile salts hydrolysis (BSH) activity was tested qualitatively, the conjugated linoleic acid production was measured spectrophotometrically, and the γ-aminobutyric acid (GABA) production was quantified by UHPLC (Ultra High Performance Liquid Cromatography). Lb. paracasei isolates resulted to be well adapted to the Malga environment and showed the highest AP activity and acetoin production. Some strains harbored very interesting health- promoting properties and produced bioactive substances. In particular, Lb. rhamnosus BT68, Lb. paracasei BT18, BT25, BT31, Pc. pentosaceus BT3, BT13, BT51 produced between 70 and 130 mg/mL of total CLA in vitro. Lb. brevis BT66 converted L-glutamate to a high concentration of GABA (129 ± 8.6 mg/L) and showed BSH activity. These first results revealed that TM-cheese is a reservoir of a high microbial diversity, and the resident LAB could be exploited not only for the applicability in dairy production but also for their health- promoting properties. Lc. lactis subsp. lactis 68 and Sc. thermophilus 93, which showed to be the best performing strains, were tested as starter and adjunct cultures, for the production of 9 experimental TM-cheese wheels in a Malga-farm, respectively. Three control (CTRL) cheeses were produced according to the tradition and any starter or adjunct culture was not added; three starter (STR) and three commercial starter (CMS) cheeses were produced inoculating the vat milk with both selected strains and a commercial Sc. thermophilus strain, respectively. After 24 hours, 1 month and 7 months of ripening the microbial content of all experimental cheeses was investigated. Mesophylic cocci and lactobacilli dominated in cheese samples after 24 hours and 1 month of ripening, while cocci dominated in full- ripened cheese. The total genomic DNA was extracted, and a fragment of the V1-V3 region was amplified and pyrosequenced. Lactococci and streptococci were the most abundant species in CTRL and STR cheese, and Lc. lactis ssp. lactis 68 affected the proliferation of the (raw milk) indigenous Lc. lactis ssp. cremoris during the early fermentation. Moreover, the commercial Sc. thermophilus showed to be dominant towards Lc. lactis supsp. lactis and cremoris naturally present in raw milk and to be responsible in decreasing the abundance of Lactobacillus sp. and Enterococcus sp. The survival of TM-cheese microbiota in vitro was investigated under simulated human gastro-intestinal (GI) conditions. The 9 full ripened experimental TM-cheeses were subjected to a model system that simulates digestive processes in the mouth, stomach and small intestine, comprising sequential incubation in human gastric and duodenal juices. Bacterial counts were performed before and after the simulation: total bacterial count and thermophilic cocci significantly decreased after the simulated digestion. Thirty-six lactobacilli were isolated from cheese after digestion: among them 1 Lb. paracasei, 1 Lb. parabuchneri and 1 Lb. fermentum were tested for their survival after GI transit. Lc. lactis subsp. lactis 68 and Lb. parabuchneri D34 strains were used to ferment whole milk and digested. The load of Lb. parabuchneri D34 decreased about one logarithmic cycle more when grown as pure culture than fermented milk after simulated digestion, suggesting that Lb. parabuchneri D34 had in itself the ability to survive to digestion, but the fat content and the cheese structure might protect LAB during the GI transit. Furthermore, our interest towards the GABA producing strains lead us to test the ability of Lb. brevis BT66 to produce GABA in situ during cheese production, through the decarboxylation of glutamate. Twenty experimental micro-cheeses were produced using a commercial starter strain (107 CFU/mL) and Lb. brevis BT66 as adjunct culture. Four different concentrations (102, 103, 104, 105 CFU/mL) of Lb. brevis BT66 were tested in quadruplicate. In order to follow the microbial evolution, samples of milk, curd and cheese after 20 days of ripening were enumerated in selective media. The control and experimental samples showed a similar trend, suggesting that both milk-resident and starter strains grew during ripening. However, the load of mesophilic lactobacilli in all experimental curd samples was higher than the control ones. The concentration of GABA and glutamic acid in cheese samples after 20 days of ripening was quantified by UHPLC-HQOMS. The amino acidic profiles showed that while the concentration of Lb. brevis BT66 in milk increased, the amount of both glutamic acid (from 324 ± 37 to 202 ± 32 mg/kg) and GABA (from 154 ± 31 to 91 ± 20 mg/kg) significantly decreased in cheese. These results suggested that the experimental strain converted glutamic acid to GABA, but that GABA may have subsequently been converted to succinate by GABA transaminases. The non-protein amino acid GABA has been reported to impact on brain function through the gut:brain axis system, to harbor an anti-obesity and antidiabetogenic effect, to regulate the immune system, the inflammation process and the energy metabolism in mammals including induction of hypotension, diuretic and tranquilizer effects, stimulation of immune cells. Owing to its ability to produce high concentrations of GABA and its BSH activity in vitro, Lb. brevis BT66 was selected to be tested in vivo in mice suffering obesity-associated type-2-diabetes. Another Lb. brevis (strain DPC6108), isolated from the human GI tract and harboring the same properties, was simultaneously investigated. The corresponding rifampicin resistant mutants (rif) were generated; their genotypic profile was obtained by RAPD-PCR and PFGE (Pulsed-Field Gel Electrophoresis) and was identical to the native strain. The conversion rates of monosodium glutamate to GABA were investigated by next- generation amino acid analysis: Lb. brevis BT66rif produced 840.5 ± 266 μg/mL of GABA with about 73% of bioconversion and Lb. brevis DPC6108rif produced 1,218.0 ± 393.2 μg/mL with about 87% of bioconversion. The BSH activity was positive to both qualitative and quantitative assays and the results were similar in both native and mutant strains. The rifampicin resistant strains were freeze-dried and tested for their stability at room temperature, +4 and -20 °C. Both spectrophotometer and plate count methods revealed that freeze-dried strains survived at room temperature during 24 hours after suspending in sterile water. The stability of freeze-dried strains at +4 and -20 °C was investigated enumerating the viable cells in selective medium during 10 weeks and any significant load reduction was not detected in the first 4 weeks following freeze-drying. Both pharmabiotic-producing Lb. brevis BT66rif and DPC6108rif were resistant to freeze-drying, survived transit through mouse GI tract (as proven by a pilot study), and their therapeutic efficiency is being assessed in vivo to treat metabolic obesity and type-2-diabetes.
I batteri lattici che possiedono proprietà salutistiche, oltre a poter essere introdotti come colture starter o colture aggiunte durante la produzione di prodotti caseari, potrebbero essere utilizzati per facilitare la biosintesi in situ di molecole bioattive durante il processo di fermentazione, aumentando l’interesse nei confronti dei prodotti caseari come alimenti multifunzionali. Ultimamente, i formaggi a latte crudo sono grande oggetto di ricerca in quanto nicchie di elevata biodiversità; in seguito alla caratterizazione genotipica e tecnologica del microbiota autoctono è possibile selezionare ceppi che potrebbero essere utilizzati per migliorare il profilo sensoriale del formaggio e dare al prodotto un valore aggiunto di tipo salutistico. Il formaggio Tradizionale di Montagna (TM) viene prodotto da latte crudo di vacca e il processo di fermentazione avviene spontaneamente in piccole fattorie chiamate “Malghe”, collocate nelle aree alpine della regione Trentino. Per la prima volta, la popolazione microbica del formaggio TM è stata caratterizzata con l’obiettivo di selezionare cocchi e batteri lattici appartenenti al gruppo dei non-starter (NSLAB) che, rispettivamente, potessero essere utili per lo sviluppo di nuove colture starter o colture aggiunte. Sono state effettuate le conte microbiologiche di campioni (n=120) di latte, cagliata e formaggio a diversi tempi di stagionatura (24 ore, 1 mese e 7 mesi) su terreni di coltura selettivi. I cocchi mesofili e termofili sono risultati dominanti nelle 24 ore successive alla produzione, mentre i lattobacilli mesofili hanno mostrato la concentrazione microbica più elevata a fine stagionatura. Seicentoquaranta colonie sono state isolate da campioni di cagliata e formaggio a 24 ore e altre 95 colonie sono state isolate da campioni di formaggio a 7 mesi di stagionatura. Tutti gli isolati sono stati caratterizzati genotipicamente utilizzando la tecnica RAPD- PCR (Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction) servendosi di due primers, PCR specie-specifica e sequenziamento parziale del gene 16S rRNA. I cocchi, appartenenti a 16 specie diverse, sono stati raggruppati in 231 biotipi, mentre i NSLAB sono stati raggruppati in 70 biotipi e attribuiti a 13 specie diverse. Lactococcus lactis, Streptococcus thermophilus e Enterococcus faecalis erano le specie dominanti nei campioni di cagliata e formaggio a 24 ore; Pediococcus pentosaceus e Lactobacillus paracasei erano le specie principali a fine stagionatura. Sono state testate le caratteristiche fenotipiche, tecnologiche e salutistiche di tutti i ceppi; in particolare, lattococchi, streptococchi ed enterococchi sono stati analizzati per la loro attività acidificante e proteolitica, capacità di crescere a temperature non ottimali, produzione di acetoino, produzione di note olfattive, capacità di inibire la crescita dei coliformi autoctoni del latte e il tasso di autolisi. Il 40% degli enterococchi ha mostrato la capacità di inibire in vitro la crescita dei coliformi del latte, ma sono stati esclusi come possibili ceppi starter perchè presentavano fattori di rischio. Tra i lattococchi e gli streptococchi, 4 Lc. lactis subsp. lactis e 2 Sc. thermophilus, caratterizzati da una rapida attività acidificante e note sensoriali gradevoli, sono stati sottoposti ad un test di resistenza alla liofilizzazione. I ceppi Lc. lactis subsp. lactis 68 e Sc. thermophilus 93 hanno mostrato le proprietà migliori e, quindi, potrebbero essere adatti per la produzione di formaggi. I ceppi NSLAB sono stati testati per le loro proprietà di crescita, metabolismo dei carboidrati, attività acidificante, proteolitica e lipolitica, produzione di acetoino, attività amino peptidasica (AP) e produzione di amine biogene. Per quanto riguarda le proprietà salutistiche, l’attività di idrolisi dei sali biliari (BSH) è stata testata qualitativamente, la produzione di acidi linoleici coniugati è stata misurata spettrofotometricamente e la produzione di acido γ- aminobutirrico (GABA) è stata quantificata tramite UHPLC. Gli isolati appartenenti alla specie Lb. paracasei hanno dimostrato di essersi ben adattati all’ambiente di Malga e hanno mostrato la migliore attività AP e produzione di acetoino. Alcuni ceppi hanno mostrato proprietà salutistiche molto interessanti e hanno prodotto sostanze bioattive. In particolare, Lb. rhamnosus BT68, Lb. paracasei BT18, BT25, BT31 e Pc. pentosaceus BT3, BT13, BT51 hanno prodotto tra 70 e 130 mg/mL di CLA totali in vitro. Lb. brevis BT66 ha convertito l’acido L-glutamico in elevate concentrazioni di GABA (129 ± 8.6 mg/L) e ha mostrato attività BSH. Questi primi risultati hanno dimostrato che il formaggio TM è una riserva di elavata diversità microbica e che i batteri lattici autoctoni potrebbero essere utilizzati non solo per la produzione di prodotti caseari ma anche per le loro proprietà salutistiche. Lc. lactis subsp. lactis 68 e Sc. thermophilus 93, considerati come i ceppi autoctoni migliori, sono stati testati come colture starter per la produzione di 9 forme di formaggio TM direttamente in Malga. Tre formaggi controllo (CTRL) sono stati prodotti secondo la tradizione e senza l’aggiunta di starter o colture aggiunte, mentre tre formaggi con ceppi starter autoctoni (STR) e tre formaggi con un ceppo starter commerciale (CMS) sono stati prodotti inoculando rispettivamente nel latte di caldaia i due ceppi selezionati e un ceppo commerciale appartenente alla specie Sc. thermophilus. Dopo 24 ore, 1 mese e 7 mesi di stagionatura, è stato analizzato il contenuto microbico di tutti i formaggi sperimentali. I cocchi mesofili e i lattobacilli sono risultati dominanti nei campioni di formaggio dopo 24 ore e 1 mese di stagionatura, mentre i cocchi erano predominanti nel formaggio a fine stagionatura. Il DNA genomico totale è stato estratto e un frammento della regione V1-V3 è stato amplificato e sottoposto a pirosequenziamento-454. I lattococchi e gli streptococchi erano la specie maggiormente presenti nei formaggi CTRL e STR, e il ceppo Lc. lactis ssp. lactis 68 ha influenzato la crescita dei batteri lattici autoctoni del latte crudo appartenenti alla specie Lc. lactis ssp. cremoris durante le prime fasi di fermentazione. Inoltre, il ceppo commerciale Sc. thermophilus sembra aver predominato sui batteri della specie Lc. lactis supsp. lactis e cremoris naturalmente presenti nel latte crudo e aver portato ad una riduzione di abbondanza di Lactobacillus sp. e Enterococcus sp. La sopravvivenza del microbiota del formaggio TM alla digestione è stata testata in vitro simulando le condizioni gasto-intestinali (GI) umane. A fine stagionatura, i 9 formaggi sperimentali sono stati sottoposti ad un sistema modello che simula il processo digestivo nella bocca, nello stomaco e nell’intestino tenue e comprende delle fasi sequenziali di incubazione con i succhi gastrici e duodenali umani. Le conte microbiche sono state effettuate prima e dopo la simulazione: la conta batterica totale e i cocchi termofili sono diminuiti significativamente dopo la digestione. Trentasei lattobacilli sono stati isolati dai 9 campioni di formaggio digeriti: tra loro, 1 Lb. paracasei, 1 Lb. parabuchneri e 1 Lb. fermentum sono stati testati per la loro sopravvivenza post-transito GI. I ceppi Lc. lactis subsp. lactis 68 e Lb. parabuchneri D34 sono stati utilizzati per fermentare aliquote di latte intero che, successivamente, sono state digerite in vitro. In seguito alla simulazione della digestione, è stata registrata una riduzione maggiore (circa 1 ciclo logaritmico) della carica di Lb. parabuchneri D34 cresciuto in coltura pura piuttosto che in latte fermentato, suggerendo che Lb. parabuchneri D34 possiede la capacità intrinseca di sopravvivere alla digestione, ma il contenuto di grasso e la struttura tipici del formaggio potrebbero proteggere i batteri lattici durante il transito GI. Inoltre, il nostro interesse nei confronti dei ceppi produttori di GABA ci ha spinti a testare la capacità del ceppo Lb. brevis BT66 di produrre GABA in situ durante la produzione di formaggio, attraverso la decarbossilazione del glutammato. Venti micro-caseificazioni sperimentali sono state effettuate utilizzando un ceppo starter commerciale (107 UFC/mL) e Lb. brevis BT66 come coltura aggiunta. Lb. brevis BT66 è stato testato in quadruplicato in quattro concentrazioni diverse (102, 103, 104, 105 UFC/mL). Con l’obiettivo di seguire l’evoluzione microbica, campioni di latte, cagliata e formaggio a 20 giorni di stagionatura sono stati processati per la conta batterica su terreni selettivi. I campioni controllo e quelli contenenti i ceppi selezionati hanno mostrato un andamento simile, suggerendo che sia i ceppi autoctoni del latte che quelli aggiunti sono cresciuti durante la stagionatura. Comunque, la carica dei lattobacilli mesofili registrata nei campioni STR e CMS era più alta dei campioni CTRL. La concentrazione di GABA e acido glutammico è stata quantificata nei campioni di formaggio a 20 giorni di stagionatura tramite UHPLC-HQOMS. I profili aminoacidici hanno mostrato che mentre la carica del ceppo Lb. brevis BT66 nel latte aumentava, la concentrazione di acido glutammico (da 324 ± 37 a 202 ± 32 mg/kg) e GABA (da 154 ± 31 a 91 ± 20 mg/kg) diminuivano significativamente nel formaggio. Questi risultati ci hanno suggerito che i ceppi sperimentali hanno convertito l’acido glutammico in GABA, ma che il GABA potrebbe essere stato successivamente convertito in succinato dall’enzima GABA- transaminasi. È stato dimostrato che l’aminoacido GABA influisce sulla funzione del cervello attraverso l’asse intestino:cervello, ha effetti positivi sul diabete e l’obesità, regola il sistema immunitario, il processo infiammatorio e il metabolismo energetico nei mammiferi, stimola l’ipotensione, ha effetti diuretici e tranquillanti. A causa della sua abilità di produrre elevate concentrazioni di GABA e la sua attività BSH in vitro, il ceppo Lb. brevis BT66 è stato selezionato per essere testato in vivo in topi con obesità indotta e diabete mellito di tipo 2. Contemporaneamente, è stato testato anche il ceppo Lb. brevis DPC6108 (isolato dal tratto GI umano), che presentava le stesse proprietà. Sono stati generati i relativi mutanti rifampicina resistenti (rif), e il loro profilo genotipico, ottenuto tramite RAPD-PCR e PFGE (Pulsed-Field Gel Electrophoresis), era identico al ceppo nativo. La percentuale di conversione del glutammato monosodico in GABA è stata calcolata in seguito ad analisi aminoacidica di ultima generazione: Lb. brevis BT66rif ha prodotto 840.5 ± 266 μg/mL di GABA con un tasso di bioconversione del 73%, mentre Lb. brevis DPC6108rif ha prodotto 1,218.0 ± 393.2 μg/mL con una bioconversione dell’87%. L’attività BSH è stata positiva in seguito ad analisi quantitativa e qualitativa, e nei ceppi mutanti e in quelli nativi sono stati osservati risultati simili tra loro. I ceppi rifampicina-resistenti sono stati liofilizzati e testati per la loro stabilità a temperatura ambiente, +4 e -20 °C. Sia il metodo spettrofotometrico che le conte su piastra hanno rivelato che i ceppi liofilizzati sono sopravvissuti a temperatura ambiente per 24 ore, dopo essere stati risospesi in acqua sterile. La stabilità dei ceppi a +4 e -20 °C è stata analizzata contando le cellule vitali su terreno di coltura selettivo per 10 settimane e nessuna riduzione significativa è stata registrata nelle prime 4 settimane successive alla liofilizzazione. Entrambi i ceppi farmabiotici Lb. brevis BT66rif e DPC6108rif hanno dimostrato di essere resistenti alla liofilizzazione, sono sopravvissuti a transito attraverso il tratto GI di topo (come dimostrato da uno studio pilota) e la loro efficacia terapeutica è attualmente sotto analisi in uno studio in vivo per il trattamento dell’obesità metabolica e del diabete mellito di tipo 2.
In vitro and in vivo activities of lactic acid bacteria from Italian mountain cheeses and their exploitation in dairy productions
CARAFA, ILARIA
2016
Abstract
The use of health-promoting lactic acid bacteria (LAB) strains as starter or adjunct cultures for dairy productions could facilitate the in situ bio-synthesis of bioactive molecules during the fermentation process, increasing the interest towards dairy products as multifunctional foods. Currently, there is much research about genotypic and technological characterization of raw milk cheeses microbiota, which is rich in biodiversity and could be exploited for improving the sensory attributes and add healthy benefits to the cheese. Traditional Mountain (TM) cheese is made from raw cow’s milk and spontaneously fermented in small farms called “Malga” located in the alpine areas of Trentino region. For the first time, the microbial population of TM-cheese has been characterized in order to select cocci and non-starter LAB suitable for developing new starter or adjunct cultures, respectively. Samples (n = 120) of milk, curd and cheese at different ripening times (24 hours, 1 month and 7 months) were enumerated in selective culture media. Mesophilic and thermophilic cocci dominated during the first 24 hours following production, and mesophilic lactobacilli were dominant at the end of ripening. Six hundred and forty colonies were isolated from curd and cheese 24 hours following production, and 95 more colonies were isolated from cheese after 7 months of ripening. All isolates were genotypically characterized by Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) with two primers, species-specific PCR and partial sequencing of 16S rRNA gene. Cocci clustered in 231 biotypes belonging to 16 different species, and non-starter LAB (NSLAB) clustered in 70 biotypes belonging to 13 different species. Lactococcus lactis, Streptococcus thermophilus and Enterococcus faecalis were dominant in curd and 24h-cheese; Pediococcus pentosaceus and Lactobacillus paracasei were the main species at the end of ripening. The phenotypic, technological and health-promoting activities of all strains were investigated. In particular, lactococci, streptococci and enterococci were tested for their acidification and proteolytic activity, ability to growth at not optimal temperatures, acetoin production, development of olfactory flavour notes, autolysis rate and ability to inhibit the growth of coliforms. Forty percent of enterococci showed the ability to inhibit raw milk resident coliforms in vitro, but they were excluded as possible starters, owing to the presence of associated risk factors. Among lactococci and streptococci, 4 Lc. lactis subsp. lactis and 2 Sc. thermophilus were fast acidifiers, produced pleasant flavours, and were subjected to the freeze-drying stability test. Lc. lactis subsp. lactis 68 and Sc. thermophilus 93 showed the best properties and might be appropriate for cheese production. NSLAB strains were tested for their growth properties, carbohydrate metabolism, acidifying ability, proteolytic and lipolytic activities, acetoin production, amino-peptidase activity (AP) and biogenic amines production. Concerning the health-promoting properties, the bile salts hydrolysis (BSH) activity was tested qualitatively, the conjugated linoleic acid production was measured spectrophotometrically, and the γ-aminobutyric acid (GABA) production was quantified by UHPLC (Ultra High Performance Liquid Cromatography). Lb. paracasei isolates resulted to be well adapted to the Malga environment and showed the highest AP activity and acetoin production. Some strains harbored very interesting health- promoting properties and produced bioactive substances. In particular, Lb. rhamnosus BT68, Lb. paracasei BT18, BT25, BT31, Pc. pentosaceus BT3, BT13, BT51 produced between 70 and 130 mg/mL of total CLA in vitro. Lb. brevis BT66 converted L-glutamate to a high concentration of GABA (129 ± 8.6 mg/L) and showed BSH activity. These first results revealed that TM-cheese is a reservoir of a high microbial diversity, and the resident LAB could be exploited not only for the applicability in dairy production but also for their health- promoting properties. Lc. lactis subsp. lactis 68 and Sc. thermophilus 93, which showed to be the best performing strains, were tested as starter and adjunct cultures, for the production of 9 experimental TM-cheese wheels in a Malga-farm, respectively. Three control (CTRL) cheeses were produced according to the tradition and any starter or adjunct culture was not added; three starter (STR) and three commercial starter (CMS) cheeses were produced inoculating the vat milk with both selected strains and a commercial Sc. thermophilus strain, respectively. After 24 hours, 1 month and 7 months of ripening the microbial content of all experimental cheeses was investigated. Mesophylic cocci and lactobacilli dominated in cheese samples after 24 hours and 1 month of ripening, while cocci dominated in full- ripened cheese. The total genomic DNA was extracted, and a fragment of the V1-V3 region was amplified and pyrosequenced. Lactococci and streptococci were the most abundant species in CTRL and STR cheese, and Lc. lactis ssp. lactis 68 affected the proliferation of the (raw milk) indigenous Lc. lactis ssp. cremoris during the early fermentation. Moreover, the commercial Sc. thermophilus showed to be dominant towards Lc. lactis supsp. lactis and cremoris naturally present in raw milk and to be responsible in decreasing the abundance of Lactobacillus sp. and Enterococcus sp. The survival of TM-cheese microbiota in vitro was investigated under simulated human gastro-intestinal (GI) conditions. The 9 full ripened experimental TM-cheeses were subjected to a model system that simulates digestive processes in the mouth, stomach and small intestine, comprising sequential incubation in human gastric and duodenal juices. Bacterial counts were performed before and after the simulation: total bacterial count and thermophilic cocci significantly decreased after the simulated digestion. Thirty-six lactobacilli were isolated from cheese after digestion: among them 1 Lb. paracasei, 1 Lb. parabuchneri and 1 Lb. fermentum were tested for their survival after GI transit. Lc. lactis subsp. lactis 68 and Lb. parabuchneri D34 strains were used to ferment whole milk and digested. The load of Lb. parabuchneri D34 decreased about one logarithmic cycle more when grown as pure culture than fermented milk after simulated digestion, suggesting that Lb. parabuchneri D34 had in itself the ability to survive to digestion, but the fat content and the cheese structure might protect LAB during the GI transit. Furthermore, our interest towards the GABA producing strains lead us to test the ability of Lb. brevis BT66 to produce GABA in situ during cheese production, through the decarboxylation of glutamate. Twenty experimental micro-cheeses were produced using a commercial starter strain (107 CFU/mL) and Lb. brevis BT66 as adjunct culture. Four different concentrations (102, 103, 104, 105 CFU/mL) of Lb. brevis BT66 were tested in quadruplicate. In order to follow the microbial evolution, samples of milk, curd and cheese after 20 days of ripening were enumerated in selective media. The control and experimental samples showed a similar trend, suggesting that both milk-resident and starter strains grew during ripening. However, the load of mesophilic lactobacilli in all experimental curd samples was higher than the control ones. The concentration of GABA and glutamic acid in cheese samples after 20 days of ripening was quantified by UHPLC-HQOMS. The amino acidic profiles showed that while the concentration of Lb. brevis BT66 in milk increased, the amount of both glutamic acid (from 324 ± 37 to 202 ± 32 mg/kg) and GABA (from 154 ± 31 to 91 ± 20 mg/kg) significantly decreased in cheese. These results suggested that the experimental strain converted glutamic acid to GABA, but that GABA may have subsequently been converted to succinate by GABA transaminases. The non-protein amino acid GABA has been reported to impact on brain function through the gut:brain axis system, to harbor an anti-obesity and antidiabetogenic effect, to regulate the immune system, the inflammation process and the energy metabolism in mammals including induction of hypotension, diuretic and tranquilizer effects, stimulation of immune cells. Owing to its ability to produce high concentrations of GABA and its BSH activity in vitro, Lb. brevis BT66 was selected to be tested in vivo in mice suffering obesity-associated type-2-diabetes. Another Lb. brevis (strain DPC6108), isolated from the human GI tract and harboring the same properties, was simultaneously investigated. The corresponding rifampicin resistant mutants (rif) were generated; their genotypic profile was obtained by RAPD-PCR and PFGE (Pulsed-Field Gel Electrophoresis) and was identical to the native strain. The conversion rates of monosodium glutamate to GABA were investigated by next- generation amino acid analysis: Lb. brevis BT66rif produced 840.5 ± 266 μg/mL of GABA with about 73% of bioconversion and Lb. brevis DPC6108rif produced 1,218.0 ± 393.2 μg/mL with about 87% of bioconversion. The BSH activity was positive to both qualitative and quantitative assays and the results were similar in both native and mutant strains. The rifampicin resistant strains were freeze-dried and tested for their stability at room temperature, +4 and -20 °C. Both spectrophotometer and plate count methods revealed that freeze-dried strains survived at room temperature during 24 hours after suspending in sterile water. The stability of freeze-dried strains at +4 and -20 °C was investigated enumerating the viable cells in selective medium during 10 weeks and any significant load reduction was not detected in the first 4 weeks following freeze-drying. Both pharmabiotic-producing Lb. brevis BT66rif and DPC6108rif were resistant to freeze-drying, survived transit through mouse GI tract (as proven by a pilot study), and their therapeutic efficiency is being assessed in vivo to treat metabolic obesity and type-2-diabetes.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Carafa.pdf
accesso solo da BNCF e BNCR
Dimensione
4.02 MB
Formato
Adobe PDF
|
4.02 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/94009
URN:NBN:IT:UNIVPM-94009