The project I have conducted intended to investigate the energetic requisites of acclimatization and if the cost of acclimatization, (i.e. the energy consumed), is mainly influenced by photosynthesis or oxidative metabolism. Cellular energy, mostly ATP and reducing power, is generated in the mitochondria and/or chloroplasts and its production depends on environmental conditions. For example, the production of energy in the chloroplast is influenced by the availability of light and the demand of electrons from metabolic processes, while the mitochondrial energy depends on the availability of substrate for metabolism and in extreme cases, on the availability of O2. It is unclear to what extent a deficiency of the energy metabolism in one of the two organelles can be compensated by the energy produced by the other. In order to test the hypothesis that acclimatization can occur only when sufficient energy is available, I set up experiments in which algal cells were subject to environmental perturbation (increased of temperature or S-starvation) and the related acclimatization was studied by manipulating the capacity of both photosynthetic and oxidative metabolism. My results showed that energy availability is a necessary precondition for acclimatization and that the availability of energy determines the direction of change and/or the acclimation timing and/or the possibility to maintain changes over time. The effects of energy availability on the biological response are related to the type of perturbation: i) The energy provided by the mitochondria seems essential for the long-term acclimation of C. reinhardtii to the S-starvation; ii) The biological response to temperature perturbation seems strictly specific to the species. The variation of some cellular components (proteins in C. reinhardtii, lipids for D. tertiolecta) appears crucial for the acclimatization of algae since it occurs regardless of the environmental conditions (O2 and culture irradiance regime).
Questa tesi ha inteso comprendere 1) in che misura la disponibilità di energia impone dei confini alla capacità acclimatatoria delle alghe e 2) in che misura i processi di acclimatazione dipendano dall’energia prodotta nel cloroplasto e nel mitocondrio. La produzione di energia nel cloroplasto è influenzata dalla disponibilità di luce e dalla domanda di elettroni da parte dei processi metabolici; l'energia mitocondriale dipende dalla disponibilità di substrati da ossidare e in casi estremi, dalla disponibilità di O2. Non è chiaro fino a che punto una deficienza del metabolismo energetico in uno dei due organelli possa essere compensata dall'energia prodotta dall'altro. Per valutare in che misura l'acclimatazione dipenda dalla disponibilità di energia, ho sottoposto cellule algali a una perturbazione ambientale (incremento di temperatura o assenza di S nel mezzo di crescita); ho quindi studiato la misura dell’acclimatazione, soprattutto in termini di aggiustamenti composizionali, in seguito a manipolazioni del metabolismo energetico fotosintetico e ossidativo. I miei risultati dimostrato che la disponibilità di energia è una precondizione necessaria per l'acclimatazione e che la disponibilità di energia influenza sia la direzione del cambiamento che la tempistica d’inizio dell’acclimatazione che il tempo di permanenza dei cambiamenti. Tuttavia gli effetti della disponibilità energetica variano a seconda del tipo di perturbazione: in C. reinhardtii l'energia fornita dai mitocondri sembra essenziale per l'acclimatazione a lungo termine in seguito ad assenza di S; la risposta al cambiamento di temperatura sembra essere specie-specifica e che la variazione di alcuni componenti cellulari (proteine in C. reinhardtii, lipidi per D. tertiolecta) appare cruciale per l'acclimatazione delle alghe, poiché si verifica a seguito dell’incremento della temperatura a prescindere dalle condizioni ambientali (O2 e regime d’irradianza della coltura).
Investigation of acclimation potential of algal cells
PESSINA, ANDREA
2018
Abstract
The project I have conducted intended to investigate the energetic requisites of acclimatization and if the cost of acclimatization, (i.e. the energy consumed), is mainly influenced by photosynthesis or oxidative metabolism. Cellular energy, mostly ATP and reducing power, is generated in the mitochondria and/or chloroplasts and its production depends on environmental conditions. For example, the production of energy in the chloroplast is influenced by the availability of light and the demand of electrons from metabolic processes, while the mitochondrial energy depends on the availability of substrate for metabolism and in extreme cases, on the availability of O2. It is unclear to what extent a deficiency of the energy metabolism in one of the two organelles can be compensated by the energy produced by the other. In order to test the hypothesis that acclimatization can occur only when sufficient energy is available, I set up experiments in which algal cells were subject to environmental perturbation (increased of temperature or S-starvation) and the related acclimatization was studied by manipulating the capacity of both photosynthetic and oxidative metabolism. My results showed that energy availability is a necessary precondition for acclimatization and that the availability of energy determines the direction of change and/or the acclimation timing and/or the possibility to maintain changes over time. The effects of energy availability on the biological response are related to the type of perturbation: i) The energy provided by the mitochondria seems essential for the long-term acclimation of C. reinhardtii to the S-starvation; ii) The biological response to temperature perturbation seems strictly specific to the species. The variation of some cellular components (proteins in C. reinhardtii, lipids for D. tertiolecta) appears crucial for the acclimatization of algae since it occurs regardless of the environmental conditions (O2 and culture irradiance regime).File | Dimensione | Formato | |
---|---|---|---|
Tesi_Pessina.pdf
Open Access dal 24/09/2019
Dimensione
6.44 MB
Formato
Adobe PDF
|
6.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/94357
URN:NBN:IT:UNIVPM-94357