With a growing population of elderly people, the number of subjects at risk of pathology is rapidly increasing. Many research groups are studying pervasive solutions to continuously and unobtrusively monitor fragile subjects in their homes, reducing health-care costs and supporting the medical diagnosis. Anomalous behaviors while performing activities of daily living (ADLs) or variations on behavioral trends are of great importance. To measure ADLs a significant number of parameters need to be considering affecting the measurement such as sensors and environment characteristics or sensors disposition. To face the impossibility to study in the real context the best configuration of sensors able to minimize costs and maximize accuracy, simulation tools are being developed as powerful means. This thesis presents several contributions on this topic. In the following research work, a study of a measurement chain aimed to measure ADLs and represented by PIRs sensors and ML algorithm is conducted and a simulation tool in form of Web Application has been developed to generate datasets and to simulate how the measurement chain reacts varying the configuration of the sensors. Starting from eWare project results, the simulation tool has been thought to provide support for technicians, developers and installers being able to speed up analysis and monitoring times, to allow rapid identification of changes in behavioral trends, to guarantee system performance monitoring and to study the best configuration of the sensors network for a given environment. The UNIVPM Home Care Web App offers the chance to create ad hoc datasets related to ADLs and to conduct analysis thanks to statistical algorithms applied on data. To measure ADLs, machine learning algorithms have been implemented in the tool. Five different tasks have been identified. To test the validity of the developed instrument six case studies divided into two categories have been considered. To the first category belong those studies related to: 1) discover the best configuration of the sensors keeping environmental characteristics and user behavior as constants; 2) define the most performant ML algorithms. The second category aims to proof the stability of the algorithm implemented and its collapse condition by varying user habits. Noise perturbation on data has been applied to all case studies. Results show the validity of the generated datasets. By maximizing the sensors network is it possible to minimize the ML error to 0.8%. Due to cost is a key factor in this scenario, the fourth case studied considered has shown that minimizing the configuration of the sensors it is possible to reduce drastically the cost with a more than reasonable value for the ML error around 11.8%. Results in ADLs measurement can be considered more than satisfactory.
Con una popolazione di anziani in crescita, il numero di soggetti a rischio di patologia è in rapido aumento. Molti gruppi di ricerca stanno studiando soluzioni pervasive per monitorare continuamente e discretamente i soggetti fragili nelle loro case, riducendo i costi sanitari e supportando la diagnosi medica. Comportamenti anomali durante l'esecuzione di attività di vita quotidiana (ADL) o variazioni sulle tendenze comportamentali sono di grande importanza.
Development of a simulation tool for measurements and analysis of simulated and real data to identify ADLs and behavioral trends through statistics techniques and ML algorithms
PIROZZI, MICHELA
2020
Abstract
With a growing population of elderly people, the number of subjects at risk of pathology is rapidly increasing. Many research groups are studying pervasive solutions to continuously and unobtrusively monitor fragile subjects in their homes, reducing health-care costs and supporting the medical diagnosis. Anomalous behaviors while performing activities of daily living (ADLs) or variations on behavioral trends are of great importance. To measure ADLs a significant number of parameters need to be considering affecting the measurement such as sensors and environment characteristics or sensors disposition. To face the impossibility to study in the real context the best configuration of sensors able to minimize costs and maximize accuracy, simulation tools are being developed as powerful means. This thesis presents several contributions on this topic. In the following research work, a study of a measurement chain aimed to measure ADLs and represented by PIRs sensors and ML algorithm is conducted and a simulation tool in form of Web Application has been developed to generate datasets and to simulate how the measurement chain reacts varying the configuration of the sensors. Starting from eWare project results, the simulation tool has been thought to provide support for technicians, developers and installers being able to speed up analysis and monitoring times, to allow rapid identification of changes in behavioral trends, to guarantee system performance monitoring and to study the best configuration of the sensors network for a given environment. The UNIVPM Home Care Web App offers the chance to create ad hoc datasets related to ADLs and to conduct analysis thanks to statistical algorithms applied on data. To measure ADLs, machine learning algorithms have been implemented in the tool. Five different tasks have been identified. To test the validity of the developed instrument six case studies divided into two categories have been considered. To the first category belong those studies related to: 1) discover the best configuration of the sensors keeping environmental characteristics and user behavior as constants; 2) define the most performant ML algorithms. The second category aims to proof the stability of the algorithm implemented and its collapse condition by varying user habits. Noise perturbation on data has been applied to all case studies. Results show the validity of the generated datasets. By maximizing the sensors network is it possible to minimize the ML error to 0.8%. Due to cost is a key factor in this scenario, the fourth case studied considered has shown that minimizing the configuration of the sensors it is possible to reduce drastically the cost with a more than reasonable value for the ML error around 11.8%. Results in ADLs measurement can be considered more than satisfactory.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Pirozzi.pdf
accesso aperto
Dimensione
4.37 MB
Formato
Adobe PDF
|
4.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/95928
URN:NBN:IT:UNIVPM-95928