Sulfur is a fundamental element for all living organisms. It is acquired as sulfate, which is also the most abundant S form in the ocean, and is assimilated as sulfide, which is fixed in the S-amino acid cysteine. Sulfate assimilation thus requires its reduction to sulfide. For sulfate to be reduced, it needs to be activated to Adenosine PhosphoSulfate (APS). This reaction is catalyzed by ATP-Sulfurylase, which in eukaryotic algae and oceanic cyanobacteria, differently from all other organisms are subject to redox regulation. The other steps of the sulfate assimilation pathways are believed not to differ in algae, as compared to embryophytes. The only other step on which the lack of information leaves crucial open questions is the synthesis of cysteine. Cysteine synthesis is catalyzed by two enzymes, Serine Acetyl Transferase (SAT) and O-Acetyl Serine (Thiol) Lyase (OAS-TL), which in embryophytes form a complex, the Cysteine Synthase Complex (CSC). My thesis will focus on these two steps, with special attention to cysteine synthesis. With respect to ATP-sulfurylase, I have tried to assess if redox regulation is mediated by the redox state of the plastoquinon pool of thylakoids. My results suggest that this is not the case. The in vivo blockage of PQ reduction through the use of DCMU, a specific inhibitor of electron transfer from QA to QB, did not affect ATP-S activity. As for the enzymes of cysteine synthesis, my bioinformatic analysis showed that the phylogeny of SAT and OAS-TL are probably difficult to reconstruct due to the shuffling of these genes across groups with the possible contribution of horizontal gene transfer. By analyzing the protein sequences, I determined that the C-terminal domain of algal SAT, which is believed to be responsible for the interaction with OAS-TL, is very similar to that of embryophytes. This suggests that the interaction of SAT and OAS-TL occurs in algae as in embryophytes. However, the N-terminus of algal SAT, which is believed to be involved in the SAT/SAT interaction, is not equally conserved; therefore, differences in the assemblage of the CSC in algae are possible. In order to clarify this point, I purified OAS-TL from the freshwater cyanobacterium Synechocystis sp. PCC 6803, the green marine algae Tetraselmis suecica and Dunaliella tertiolecta, the green freshwater algae Chlamydomonas reinhardtii, the marine diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum, and from the marine dinoflagellate Amphidinium klebsii. These purified proteins showed some differences in mass, which was however always within the 35-44 kDa range. All the purified proteins were active, although specific activity differed among species. Interestingly, the activity, in most cases, was higher when the enzyme was more diluted; the enzyme is more active, as it also happens in embryophytes. For embryophytes, this has been interpreted as an indication that OAS-TL activity is modulated through protein-protein interaction. To verify the hypothesis that algae have CSC like embryophytes, I studied the ability of algae OAS-TL to form a complex with Arabidopsis thaliana SAT (overexpressed in E. coli). In all cases, a complex was formed, although the strength of the interaction between SAT and OAS-TL appeared to be different for different algal species. The presence of OAS-TL and SAT in the purified native complexes was confirmed by immunodetection of both proteins. The cysteine synthase complexes that were formed in these experiments were appreciably larger (approximately 600 kDa vs 320 kDa) than those of embryophytes. Further experiments will be required to ascertain the actual stoichiometry and structure of the algal CSC. However, based on the above observation, I propose that algal CSC is composed by two SAT trimers, with an OAS-TL dimer bound to each SAT monomer. This configuration would give a mass of about 600 kDa, compatible with the results obtained in our CSCS purification experiments. It is also noteworthy that the strength of the binding of algal OAS-TL to AtSAT5 was greater in green algae than in algae of the red lineage. This may be an indication of the fact that a greater proportion of OAS-TL is in the free form, in red-lineage algae, leading to a higher flux of S into cysteines. At this stage, this is only a hypothesis that requires further confirmation.
Gli organismi fotosintetici acquisiscono lo zolfo in forma di solfato e lo assimilano, in un processo riduttivo, come solfuro. L’amminoacido cisteina è il primo composto organico in cui lo zolfo viene incorporato al termine della via di assimilazione. Perché il solfato possa essere ridotto, deve prima essere attivato ad AdenosinFosfosolfato (APS). Questa reazione è catalizzata dall’enzima ATP-solforilasi, che nella gran parte delle alghe, eccetto dinoflagellate e -cianobatteri, e a differenza di tutti gli altri organismi, è soggetta a regolazione redox. Gli altri passaggi della via di assimilazione del solfato nelle alghe si ritiene siano simili a quelli che hanno luogo nelle piante. Una possibile ulteriore eccezione è rappresentata dal passaggio che porta alla sintesi della cisteina, che è catalizzata da due enzimi: la Serina Acetil Trasferasi (SAT) e la O-Acetil Serina (Tiol)Liasi (OAS-TL). Nelle piante, questi due enzimi formano un complesso, il Complesso della Cisteina Sintasi (CSC). Rispetto alla ATP-sulforilasi, ho cercato di verificare se la sua regolazione redox, in vivo, fosse mediata dallo stato redox del pool tilacoidale dei plastochinoni. I miei risultati indicano che non è così. L’utilizzo in vivo del DCMU, che blocca il trasferimento di elettroni dal PSII ai plastochinoni, infatti, non ha avuto alcuna influenza sull’attività della ATP solforilasi. Per quanto riguarda gli enzimi implicati nella sintesi della cisteina, l’analisi delle sequenze proteiche ha indicato che il dominio C terminale della SAT, che si ritiene sia responsabile dell’interazione con la OAs-TL, è molto simile in alghe e in piante. Tuttavia, la porzione N-terminale delle SAT algali, che è probabilmente implicata nelle interazioni tra monomeri della SAT, è diversa da quella delle piante. Questo fa ritenere che i CSC algali possano essere diversi da quelli delle piante. Per chiarire questo punto, ho purificato la OAS-TL di 7 specie algali di diversa tassonomia. Le OAS-TL algali sono risultate di diversa taglia, seppure sempre comprese tra 35 e 44 kDa. Tutte le proteine purificate sono risultate attive, anche se ho riscontrato differenze nell’attività specifica. L’attività, in quasi tutti i casi, era più alta quando l’enzima era saggiato in soluzioni più diluite, come peraltro avviene nelle piante. Questo è dovuto al fatto che la OAS-TL non è attiva quando associata alla SAT. E questa associazione è più probabile quando gli estratti proteici sono più concentrati. Per verificare dunque che le OAS-TL algali fossero implicate nella formazione di un CSC, ho analizzato la propensione di questi enzimi a complessare una SAT della pianta Arabidopsis thaliana (sovraespressa in E. coli). Per tutte le specie algali studiate, ho osservato la formazione di CSC, sebbene la forza della interazione tra SAT e OAS-TL variasse da specie a specie. I CSC sono stati purificati e la presenza di OAS-TL and SAT nei complessi nativi è stata confermata utilizzando anticorpi per entrambe le proteine. I CSC formati dalle OAS-TL algali erano notevolmente più grandi di quelli che si costituiscono nelle piante: i CSC algali avevano una massa di circa 600 kDa, dunque quasi doppia rispetto a quella dei CSC delle piante (320 kDa). Dato che i monomeri di alghe e piante non hanno masse molto diverse, questo fa ritenere che i CSC algali abbiano stechiometria diversa. Sulla base delle dimensioni del complesso e dei monomeri, ipotizzo che le CSC algali contengano due trimeri di SAT, con un dimero di OAS-TL per ogni monomero di SAT. Di non secondario interesse è il fatto che la propensione a formare CSC è apprezzabilmente maggiore nelle alghe verdi che nelle alghe della linea rossa. Questo suggerisce che nelle alghe della linea rossa ci sia una maggior proporzione di OAS-TL libere. Siccome la sintesi di cisteina è catalizzata solo dalle OAS-TL libere, questo porta a concludere che, in queste alghe, il flusso di S verso la cisteina sia maggiore. Ciò concorda con la maggior quota cellulare di S nelle alghe della linea rossa, rispetto a quelle della linea verde.
Sulfur Metabolism in Microalgae
LIN, HONGMIN
2018
Abstract
Sulfur is a fundamental element for all living organisms. It is acquired as sulfate, which is also the most abundant S form in the ocean, and is assimilated as sulfide, which is fixed in the S-amino acid cysteine. Sulfate assimilation thus requires its reduction to sulfide. For sulfate to be reduced, it needs to be activated to Adenosine PhosphoSulfate (APS). This reaction is catalyzed by ATP-Sulfurylase, which in eukaryotic algae and oceanic cyanobacteria, differently from all other organisms are subject to redox regulation. The other steps of the sulfate assimilation pathways are believed not to differ in algae, as compared to embryophytes. The only other step on which the lack of information leaves crucial open questions is the synthesis of cysteine. Cysteine synthesis is catalyzed by two enzymes, Serine Acetyl Transferase (SAT) and O-Acetyl Serine (Thiol) Lyase (OAS-TL), which in embryophytes form a complex, the Cysteine Synthase Complex (CSC). My thesis will focus on these two steps, with special attention to cysteine synthesis. With respect to ATP-sulfurylase, I have tried to assess if redox regulation is mediated by the redox state of the plastoquinon pool of thylakoids. My results suggest that this is not the case. The in vivo blockage of PQ reduction through the use of DCMU, a specific inhibitor of electron transfer from QA to QB, did not affect ATP-S activity. As for the enzymes of cysteine synthesis, my bioinformatic analysis showed that the phylogeny of SAT and OAS-TL are probably difficult to reconstruct due to the shuffling of these genes across groups with the possible contribution of horizontal gene transfer. By analyzing the protein sequences, I determined that the C-terminal domain of algal SAT, which is believed to be responsible for the interaction with OAS-TL, is very similar to that of embryophytes. This suggests that the interaction of SAT and OAS-TL occurs in algae as in embryophytes. However, the N-terminus of algal SAT, which is believed to be involved in the SAT/SAT interaction, is not equally conserved; therefore, differences in the assemblage of the CSC in algae are possible. In order to clarify this point, I purified OAS-TL from the freshwater cyanobacterium Synechocystis sp. PCC 6803, the green marine algae Tetraselmis suecica and Dunaliella tertiolecta, the green freshwater algae Chlamydomonas reinhardtii, the marine diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum, and from the marine dinoflagellate Amphidinium klebsii. These purified proteins showed some differences in mass, which was however always within the 35-44 kDa range. All the purified proteins were active, although specific activity differed among species. Interestingly, the activity, in most cases, was higher when the enzyme was more diluted; the enzyme is more active, as it also happens in embryophytes. For embryophytes, this has been interpreted as an indication that OAS-TL activity is modulated through protein-protein interaction. To verify the hypothesis that algae have CSC like embryophytes, I studied the ability of algae OAS-TL to form a complex with Arabidopsis thaliana SAT (overexpressed in E. coli). In all cases, a complex was formed, although the strength of the interaction between SAT and OAS-TL appeared to be different for different algal species. The presence of OAS-TL and SAT in the purified native complexes was confirmed by immunodetection of both proteins. The cysteine synthase complexes that were formed in these experiments were appreciably larger (approximately 600 kDa vs 320 kDa) than those of embryophytes. Further experiments will be required to ascertain the actual stoichiometry and structure of the algal CSC. However, based on the above observation, I propose that algal CSC is composed by two SAT trimers, with an OAS-TL dimer bound to each SAT monomer. This configuration would give a mass of about 600 kDa, compatible with the results obtained in our CSCS purification experiments. It is also noteworthy that the strength of the binding of algal OAS-TL to AtSAT5 was greater in green algae than in algae of the red lineage. This may be an indication of the fact that a greater proportion of OAS-TL is in the free form, in red-lineage algae, leading to a higher flux of S into cysteines. At this stage, this is only a hypothesis that requires further confirmation.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Lin.pdf
Open Access dal 02/03/2020
Dimensione
14.51 MB
Formato
Adobe PDF
|
14.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/96191
URN:NBN:IT:UNIVPM-96191