Carbon and Capture Storage could be a critical option in the group of solutions available to combat the climate change, since it could allow for significant reductions in CO2 emissions. There are different CO2 capture mechanisms (Pre and Post Combustion, Oxy Fuel Combustion). However, one common requirement for nearly all large scale CCS schemes is a system for transporting CO2 from capture sites (e.g. power plants) to storage sites (e.g. underground reservoirs). The aim of this Thesis is to present a detailed Flow Assurance study of two hypothetical industrial scale transport scenarios, in order to define the main design and operating parameters and highlight all the possible uncertainties and criticalities that can occur in the transport of supercritical CO2 and that should be deeply investigated with a pilot plant. A review of existing literature references is presented, aiming at collecting information and data on the subject and identifying the transport issues relevant to existing systems. On the basis of the collected information, two hypothetical pipelines have been defined, in terms of routing, environmental and operating parameters. Furthermore three different compositions of the transported streams have been defined (one for each capture system) and thermodynamically characterized. The Flow Assurance study has been carried out by performing simulations in steady state and transient conditions, as well as an hydrate formation study. They have been performed for both the transport scenario and with the three compositions. Results have been obtained in terms of the effect of the different CO2 compositions on the transport, and criticalities that can be encountered in some transient operations have been highlighted. Actually the extreme physical characteristics are represented by the post-combustion composition (more similar to pure CO2) and oxyfuel (the more dissimilar one). The oxyfuel, in particular, requires the higher operating pressure to allow stable pipeline operation. Vaporization problems have been encountered during the shutdown operations and low temperatures at pipeline inlet are recommended to avoid vaporization with consequence on the successive restart operations. For what concern water hammer, calculations have shown that the behaviour of this fluid is different from normal liquids, since the high compressibility helps in dampening overpressures generated by sudden valve closures. Blowdown has been found to be the most critical analyzed flow condition since it can generate very low temperatures both inside the pipeline section to be depressurized and in the vent systems.
La tecnologia “Carbon, Capture and Storage” è attualmente di grande interesse nel campo delle possibili soluzioni da adottare per combattere i cambiamenti climatici. Tre sono le metodologie di cattura (Pre e Post Combustion, Oxyfuel Combustion). In ogni caso, per la quasi totalità degli impianti adibiti a CCS, è necessario un sistema di trasporto della CO2 dai siti di cattura (es: centrali elettriche) ai siti di stoccaggio (es: giacimenti dismessi). Lo scopo di questo lavoro di tesi è di presentare un dettagliato studio di “Flow Assurance” di due ipotetiche condotte che operano il trasporto di CO2 supercritica su larga scala, con lo scopo di evidenziare le possibili criticità che si possono verificare durante l’utilizzo di questa tecnologia, e che dovrebbero essere investigate approfonditamente con un impianto pilota. In primo luogo è riportata una revisione delle risorse presenti in letteratura, per reperire informazioni sull’argomento e di identificare problematiche riscontrate in condotte esistenti. Sulla base delle informazioni reperite, due ipotetiche condotte sono state definite in termini di routing, parametri ambientali e parametri operativi. Inoltre tre differenti composizioni dello stream di CO2 sono state ipotizzate (una per ogni metodologia di cattura) e sono state caratterizzate da un punto di vista termodinamico. Successivamente uno studio di Flow Assurance è stato condotto per mezzo di simulazioni in condizioni stazionarie e transitorie ed uno studio per la formazione di idrati. Le simulazioni sono state effettuate in entrambe le condotte e con tutte e tre le composizioni) Dall’analisi svolta, sono stati ottenuti risultati riguardanti le differenze riscontrate nel trasporto delle tre differenti tipologie di fluido e problematiche relative ad alcune operazioni transitorie sono emerse. Le simulazioni hanno dimostrato che la composizione associata alla tecnologia di cattura Post Combustion è caratterizzata dal comportamento più simile alla CO2 pura, mentre la il composizione associata all’Oxyfuel è quella che si discosta maggiormente. Quest’ultima, richiede la più alta pressione operativa in grado di assicurare un comportamento stabile alla linea. Problemi di vaporizzazione in condotta sono emersi durante le operazioni di shutdown, e basse temperature di ingresso alla linea sono richieste per evitare la formazione di bolle che possono influenzare l’andamento delle successive operazioni di restart. Relativamente al colpo d’ariete, le simulazioni hanno dimostrato che il comportamento della CO2 supercritica si differenzia a quello degli altri fluidi per la sua maggiore compressibilità. L’operazione di blowdown è invece risultata essere la più critica, in quanto temperature molto basse possono essere riscontrate sia all’interno della linea che nel sistema di vent.
Trasporto di CO2 in fase supercritica. Studio di flow assurance per due condotte su scala industriale
MARCHETTI, CECILIA
2011
Abstract
Carbon and Capture Storage could be a critical option in the group of solutions available to combat the climate change, since it could allow for significant reductions in CO2 emissions. There are different CO2 capture mechanisms (Pre and Post Combustion, Oxy Fuel Combustion). However, one common requirement for nearly all large scale CCS schemes is a system for transporting CO2 from capture sites (e.g. power plants) to storage sites (e.g. underground reservoirs). The aim of this Thesis is to present a detailed Flow Assurance study of two hypothetical industrial scale transport scenarios, in order to define the main design and operating parameters and highlight all the possible uncertainties and criticalities that can occur in the transport of supercritical CO2 and that should be deeply investigated with a pilot plant. A review of existing literature references is presented, aiming at collecting information and data on the subject and identifying the transport issues relevant to existing systems. On the basis of the collected information, two hypothetical pipelines have been defined, in terms of routing, environmental and operating parameters. Furthermore three different compositions of the transported streams have been defined (one for each capture system) and thermodynamically characterized. The Flow Assurance study has been carried out by performing simulations in steady state and transient conditions, as well as an hydrate formation study. They have been performed for both the transport scenario and with the three compositions. Results have been obtained in terms of the effect of the different CO2 compositions on the transport, and criticalities that can be encountered in some transient operations have been highlighted. Actually the extreme physical characteristics are represented by the post-combustion composition (more similar to pure CO2) and oxyfuel (the more dissimilar one). The oxyfuel, in particular, requires the higher operating pressure to allow stable pipeline operation. Vaporization problems have been encountered during the shutdown operations and low temperatures at pipeline inlet are recommended to avoid vaporization with consequence on the successive restart operations. For what concern water hammer, calculations have shown that the behaviour of this fluid is different from normal liquids, since the high compressibility helps in dampening overpressures generated by sudden valve closures. Blowdown has been found to be the most critical analyzed flow condition since it can generate very low temperatures both inside the pipeline section to be depressurized and in the vent systems.File | Dimensione | Formato | |
---|---|---|---|
Tesi.Marchetti.doc
accesso solo da BNCF e BNCR
Dimensione
4.5 MB
Formato
Microsoft Word
|
4.5 MB | Microsoft Word |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/96206
URN:NBN:IT:UNIVPM-96206