The marine environment is polluted by diverse contaminants among which are toxic metals, aliphatic and polycyclic aromatic hydrocarbons (PAHs) for which marine sediments very often constitute a major reservoir. At various locations, the discharge of hazardous substances over many years has resulted in high levels of pollution. Several remediation approaches have been proposed which can be classified under physico-chemical or biological remediation. Physico-chemical methods involve processing such as thermal treatment, or the use of chemical oxidation agents while bioremediation makes use of biological agents such as microorganisms and/or their metabolic products. Generally these bioremediation approaches are considered more environmentally friendly and with lower economic cost. Throughout this PhD research, a number of sustainable bioremediation approaches were investigated on sediments highly contaminated with PAHs and toxic metals with objective to propose a sustainable remediation approach for the contaminated sediments. The initial step of this research consisted of preparing an extensive literature review on patented bioremediation approaches developed in the last 20 years. Over 150 patents were reviewed and a majority consisted of bioaugmentation methods and a number of cheap and environmentally friendly biomaterials were also proposed as biostimulating agents. In the first sets of experiments, bioaugmentation and biostimulation methods were investigated for enhanced PAH degradation, specifically bioaugmentation with Aspergillus strains, biostimulation with inorganic nutrients, microbial fuel cell experiments and natural attenuation. Also, potential effects of these biotreatments on metal mobility were studied. Results indicated significant decrease of PAH concentrations especially with the biostimulation with inorganic nutrients being the most effective approach (>90%). Also, the biotreatments changed the partitioning of metals, including their solubilization, suggesting the need of parallel environmental risk assessment. The findings of the Life Cycle Assessment (LCA) study carried out suggest that ex situ biotreatments can have a lower carbon footprint than current management options of contaminated sediments (i.e., landfill disposal and/ or disposal in confined aquatic facilities). In further experiments, more sustainable organic nutrients such as activated sludge and Supercompost were investigated as biostimulating/bioaugmentation agents. The sediments were pretreated with ozone for enhanced removal of recalcitrant PAHs and to facilitate the subsequent bioremediation experiments. However no significant effect of ozone was observed, and the efficiency of the organic nutrients for PAH degradation was very low (less than 10%) The last experiment was on Electrokinetic remediation carried out to observe metal removal from an anode to a cathode end and a possible mobilization of the PAHs and approximately 50% of Pb was mobilized during this experiment.
L'ambiente marino è inquinato da diversi contaminanti tra cui metalli tossici, idrocarburi aromatici alifatici e policiclici (IPA) per i quali i sedimenti marini costituiscono molto spesso un importante serbatoio. In vari luoghi, lo scarico di sostanze pericolose per molti anni ha portato a livelli elevati di inquinamento. Sono stati proposti diversi approcci di bonifica che possono essere classificati in bonifiche fisico-chimiche o biologiche. I metodi fisico-chimici comportano processi come il trattamento termico o l'uso di agenti di ossidazione chimica mentre il trattamento biologico fa uso di agenti biologici come microrganismi e / o loro prodotti metabolici. Generalmente questi approcci biologici sono considerati più rispettosi dell'ambiente e con un costo economico inferiore. Nel corso di questa ricerca di dottorato, sono stati studiati numerosi approcci di biotrattamento sostenibili su sedimenti altamente contaminati da IPA e metalli tossici con l'obiettivo di proporre un approccio di bonifica sostenibile per i sedimenti contaminati. Il passo iniziale di questa ricerca è consistito nella preparazione di un'ampia revisione della letteratura sugli approcci di biorisanamento brevettati sviluppati negli ultimi 20 anni. Sono stati esaminati oltre 150 brevetti e la maggior parte consisteva in metodi di bioaugmentation e sono stati proposti anche diversi biomateriali economici ed ecocompatibili come agenti biostimolanti. Nelle prime serie di esperimenti, sono stati studiati metodi di bioaumento e biostimolazione per una degradazione avanzata degli IPA, in particolare la bioaumentazione con ceppi di Aspergillus, la biostimolazione con nutrienti inorganici, esperimenti con celle a combustibile microbiche e attenuazione naturale. Inoltre, sono stati studiati i potenziali effetti di questi biotrattamenti sulla mobilità dei metalli. I risultati hanno indicato una diminuzione significativa delle concentrazioni di IPA, specialmente con la biostimolazione con nutrienti inorganici che è l'approccio più efficace (> 90%). Inoltre, i biotrattamenti hanno modificato la partizione dei metalli, inclusa la loro solubilizzazione, suggerendo la necessità di una valutazione parallela del rischio ambientale. I risultati dello studio Life Cycle Assessment (LCA) condotto suggeriscono che i biotrattamenti ex situ possono avere un'impronta di carbonio inferiore rispetto alle attuali opzioni di gestione dei sedimenti contaminati (ad esempio, smaltimento in discarica e / o smaltimento in strutture acquatiche confinate). In ulteriori esperimenti, sono stati studiati nutrienti organici più sostenibili come i fanghi attivi e il Supercompost come agenti di biostimolazione / bioaumento. I sedimenti sono stati pretrattati con ozono per una migliore rimozione degli IPA recalcitranti e per facilitare i successivi esperimenti di biorisanamento. Tuttavia non è stato osservato alcun effetto significativo dell'ozono e l'efficienza dei nutrienti organici per la degradazione degli IPA è stata molto bassa (meno del 10%) L'ultimo esperimento riguardava la bonifica elettrocinetica effettuata per osservare la rimozione del metallo da un anodo a un'estremità catodica e una possibile mobilizzazione degli IPA e circa il 50% di Pb è stato mobilitato durante questo esperimento.
Sustainable Remediation Strategies for Contaminated Marine Sediments
HEKEU DEUGA, MARIE MELANIE
2021
Abstract
The marine environment is polluted by diverse contaminants among which are toxic metals, aliphatic and polycyclic aromatic hydrocarbons (PAHs) for which marine sediments very often constitute a major reservoir. At various locations, the discharge of hazardous substances over many years has resulted in high levels of pollution. Several remediation approaches have been proposed which can be classified under physico-chemical or biological remediation. Physico-chemical methods involve processing such as thermal treatment, or the use of chemical oxidation agents while bioremediation makes use of biological agents such as microorganisms and/or their metabolic products. Generally these bioremediation approaches are considered more environmentally friendly and with lower economic cost. Throughout this PhD research, a number of sustainable bioremediation approaches were investigated on sediments highly contaminated with PAHs and toxic metals with objective to propose a sustainable remediation approach for the contaminated sediments. The initial step of this research consisted of preparing an extensive literature review on patented bioremediation approaches developed in the last 20 years. Over 150 patents were reviewed and a majority consisted of bioaugmentation methods and a number of cheap and environmentally friendly biomaterials were also proposed as biostimulating agents. In the first sets of experiments, bioaugmentation and biostimulation methods were investigated for enhanced PAH degradation, specifically bioaugmentation with Aspergillus strains, biostimulation with inorganic nutrients, microbial fuel cell experiments and natural attenuation. Also, potential effects of these biotreatments on metal mobility were studied. Results indicated significant decrease of PAH concentrations especially with the biostimulation with inorganic nutrients being the most effective approach (>90%). Also, the biotreatments changed the partitioning of metals, including their solubilization, suggesting the need of parallel environmental risk assessment. The findings of the Life Cycle Assessment (LCA) study carried out suggest that ex situ biotreatments can have a lower carbon footprint than current management options of contaminated sediments (i.e., landfill disposal and/ or disposal in confined aquatic facilities). In further experiments, more sustainable organic nutrients such as activated sludge and Supercompost were investigated as biostimulating/bioaugmentation agents. The sediments were pretreated with ozone for enhanced removal of recalcitrant PAHs and to facilitate the subsequent bioremediation experiments. However no significant effect of ozone was observed, and the efficiency of the organic nutrients for PAH degradation was very low (less than 10%) The last experiment was on Electrokinetic remediation carried out to observe metal removal from an anode to a cathode end and a possible mobilization of the PAHs and approximately 50% of Pb was mobilized during this experiment.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Hekeu.pdf
accesso aperto
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/96506
URN:NBN:IT:UNIVPM-96506