The new issues addressed in scientific research in the thermal and fluid dynamic field often require a multidisciplinary approach and non–traditional investigation techniques. One of the most used strategies, also because of increasing availability of computational resources, is to operate with numerical models that allow the simulation of complex, multiphysics and multiscale phenomena. A cutting-edge topic is certainly the study of fluctuating pressure resulting from a body and air interaction: this disturbance can be such that to be in the hearing range and its diffusion can contribute to the increase in noise pollution and have a significant impact on our daily life. As an example, we can refer to the noise produced by multi–megawatt wind turbines that are often equipped with trailing edge serration in order to reduce the aeroacouistic emission. Another crucial topic in this moment is related to the organic fluids, carrying viruses or bacteria, diffusion: SARS–CoV–2 pandemic has highlighted how important is to understand and rigorous study saliva droplets dynamics and their interaction with the environment in order to provide guidelines on social distance and good practices to be followed in daily life. In this PhD thesis a numerical approach is used to study the aeroacoustic emission radiated by objects in a flow as well as to investigate airborne diffusion of organic fluid micro - particles carrying viruses. A new solver is developed in order to perform Direct Numerical Simulation of the aeroacoustic fields. Explicit high–order Runge–Kutta schemes are employed for time integration and non–reflective boundary conditions are adopted. The local wall heating effect fluctuating pressure is also investigated, in order to give an insight on a new method for active controlling the noise emission. Furthermore, a new computational model, developed in a multiscale Eulerian - Lagrangian framework, is presented. This approach allows to evaluate the spreading of micro–droplets emitted in respiratory activities, as well as their thermal and fluid dynamic interaction with the surrounding environment, taking also into account the droplet dry nuclei formation. Saliva sodium chloride crystallization kinetics is modelled by coupling Particle–Source–In–cell (PSI–cell) method with Population Balance Equation (PBE). Moreover, a real–time disinfection strategy is studied: biological inactivation of SARS–CoV–2 using ultraviolet–C radiation is addressed. The aforementioned models are developed adopting the unstructured, co–located, finite volume method available in the well-known OpenFOAM library.

I temi affrontati nella ricerca in ambito termofluidodinamico richiedono spesso un approccio multidisciplinare e tecniche di indagine non tradizionali. Una delle strategie più utilizzate, vista anche la sempre crescente disponibilità di risorse computazionali, è quella di operare con modelli numerici per la simulazione di fenomeni complessi, multifisici e multiscala. Una tematica di forte interesse ingegneristico è lo studio delle fluttuazioni di pressione derivanti dall’interazione tra un corpo e una corrente d’aria che lo investe: tale disturbo può ricadere nel campo dell’udibile e la sua diffusione può contribuire all’aumento dell’inquinamento acustico. Ne è un esempio il rumore prodotto dalle turbine eoliche di grande taglia per le quali sono state già state adottate tecniche di abbattimento del rumore, come l’impiego di bordi di uscita dentellati (trailing edge serration). Un altro tema di estrema rilevanza è quello del trasporto di fluidi organici veicolanti virus o batteri: la recente pandemia da SARS–CoV–2 ha messo in evidenza quanto sia importante valutare accuratamente la dinamica delle micro–gocce di saliva e la loro interazione termofluidodinamica con l’ambiente al fine di fornire corrette linee guida sulla distanza sociale e sulle buone pratiche da seguire nella quotidianità all’interno del contesto pandemico. In questo lavoro di tesi viene utilizzato un approccio numerico per lo studio dell’emissione aeroacustica prodotta da oggetti investiti da un flusso d’aria e della diffusione aerea di micro–particelle di fluido organico veicolanti virus. Viene sviluppato un solutore in grado di condurre simulazioni dirette (Direct Numerical Simulation – DNS) del campo aeroacustico, utilizzando condizioni al contorno non riflettive e schemi di integrazione temporale Runge–Kutta espliciti di alto ordine, e indagata la possibilità di adottare il riscaldamento localizzato quale tecnica di smorzamento delle fluttuazioni di pressione caratteristiche di un’onda sonora. Viene, inoltre, presentato un modello con approccio Euleriano–Lagrangiano multiscala, che permetta di valutare la diffusione in ambiente di particelle di fluido muco–salivare, nonché il processo di cristallizzazione della quota–parte salina delle droplet accoppiando il metodo Particle–Source–In–cell (PSI–cell) alla Population Balance Equation (PBE). Viene indagata anche la possibilità di ridurre la trasmissione di SARS–CoV–2 utilizzando la radiazione ultravioletta di tipo C quale tecnica di disinfezione real–time. I modelli sono sviluppati adottando il metodo di discretizzazione ai volumi finiti non strutturati e co–locati disponibile all’interno della libreria OpenFOAM.

Trasporto di fluidi organici e di fluttuazioni di pressione: un approccio numerico alla termofluidodinamica.

FALONE, MATTEO
2022

Abstract

The new issues addressed in scientific research in the thermal and fluid dynamic field often require a multidisciplinary approach and non–traditional investigation techniques. One of the most used strategies, also because of increasing availability of computational resources, is to operate with numerical models that allow the simulation of complex, multiphysics and multiscale phenomena. A cutting-edge topic is certainly the study of fluctuating pressure resulting from a body and air interaction: this disturbance can be such that to be in the hearing range and its diffusion can contribute to the increase in noise pollution and have a significant impact on our daily life. As an example, we can refer to the noise produced by multi–megawatt wind turbines that are often equipped with trailing edge serration in order to reduce the aeroacouistic emission. Another crucial topic in this moment is related to the organic fluids, carrying viruses or bacteria, diffusion: SARS–CoV–2 pandemic has highlighted how important is to understand and rigorous study saliva droplets dynamics and their interaction with the environment in order to provide guidelines on social distance and good practices to be followed in daily life. In this PhD thesis a numerical approach is used to study the aeroacoustic emission radiated by objects in a flow as well as to investigate airborne diffusion of organic fluid micro - particles carrying viruses. A new solver is developed in order to perform Direct Numerical Simulation of the aeroacoustic fields. Explicit high–order Runge–Kutta schemes are employed for time integration and non–reflective boundary conditions are adopted. The local wall heating effect fluctuating pressure is also investigated, in order to give an insight on a new method for active controlling the noise emission. Furthermore, a new computational model, developed in a multiscale Eulerian - Lagrangian framework, is presented. This approach allows to evaluate the spreading of micro–droplets emitted in respiratory activities, as well as their thermal and fluid dynamic interaction with the surrounding environment, taking also into account the droplet dry nuclei formation. Saliva sodium chloride crystallization kinetics is modelled by coupling Particle–Source–In–cell (PSI–cell) method with Population Balance Equation (PBE). Moreover, a real–time disinfection strategy is studied: biological inactivation of SARS–CoV–2 using ultraviolet–C radiation is addressed. The aforementioned models are developed adopting the unstructured, co–located, finite volume method available in the well-known OpenFOAM library.
27-mag-2022
Italiano
I temi affrontati nella ricerca in ambito termofluidodinamico richiedono spesso un approccio multidisciplinare e tecniche di indagine non tradizionali. Una delle strategie più utilizzate, vista anche la sempre crescente disponibilità di risorse computazionali, è quella di operare con modelli numerici per la simulazione di fenomeni complessi, multifisici e multiscala. Una tematica di forte interesse ingegneristico è lo studio delle fluttuazioni di pressione derivanti dall’interazione tra un corpo e una corrente d’aria che lo investe: tale disturbo può ricadere nel campo dell’udibile e la sua diffusione può contribuire all’aumento dell’inquinamento acustico. Ne è un esempio il rumore prodotto dalle turbine eoliche di grande taglia per le quali sono state già state adottate tecniche di abbattimento del rumore, come l’impiego di bordi di uscita dentellati (trailing edge serration). Un altro tema di estrema rilevanza è quello del trasporto di fluidi organici veicolanti virus o batteri: la recente pandemia da SARS–CoV–2 ha messo in evidenza quanto sia importante valutare accuratamente la dinamica delle micro–gocce di saliva e la loro interazione termofluidodinamica con l’ambiente al fine di fornire corrette linee guida sulla distanza sociale e sulle buone pratiche da seguire nella quotidianità all’interno del contesto pandemico. In questo lavoro di tesi viene utilizzato un approccio numerico per lo studio dell’emissione aeroacustica prodotta da oggetti investiti da un flusso d’aria e della diffusione aerea di micro–particelle di fluido organico veicolanti virus. Viene sviluppato un solutore in grado di condurre simulazioni dirette (Direct Numerical Simulation – DNS) del campo aeroacustico, utilizzando condizioni al contorno non riflettive e schemi di integrazione temporale Runge–Kutta espliciti di alto ordine, e indagata la possibilità di adottare il riscaldamento localizzato quale tecnica di smorzamento delle fluttuazioni di pressione caratteristiche di un’onda sonora. Viene, inoltre, presentato un modello con approccio Euleriano–Lagrangiano multiscala, che permetta di valutare la diffusione in ambiente di particelle di fluido muco–salivare, nonché il processo di cristallizzazione della quota–parte salina delle droplet accoppiando il metodo Particle–Source–In–cell (PSI–cell) alla Population Balance Equation (PBE). Viene indagata anche la possibilità di ridurre la trasmissione di SARS–CoV–2 utilizzando la radiazione ultravioletta di tipo C quale tecnica di disinfezione real–time. I modelli sono sviluppati adottando il metodo di discretizzazione ai volumi finiti non strutturati e co–locati disponibile all’interno della libreria OpenFOAM.
RICCI, Renato
D'ALESSANDRO, Valerio
Università Politecnica delle Marche
File in questo prodotto:
File Dimensione Formato  
Tesi_Falone.pdf

accesso aperto

Dimensione 27.78 MB
Formato Adobe PDF
27.78 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/96674
Il codice NBN di questa tesi è URN:NBN:IT:UNIVPM-96674