This thesis reports the study of a particular class of natural surfactants, the Rhamnolipids , to be used in bioremediation processes, especially in the petroleum industry. The case study of this thesis stems from a very important and frequent problem in the last decades, namely the environmental pollution of water and soils by hydrocarbons, petrochemical products and their derivatives. Rhamnolipids are a class of glycolipids produced by Pseudomonas aeruginosa (Desai & Banat, 1997a). They have been starting to became relevant for bioremediation, a waste management technique that involves the use of organisms to neutralize pollutants from a contaminated site. The low solubility and adsorption are two major properties of high molecular weight hydrocarbons, which limit their availability to microorganisms. For this reason, the addition of surfactants enhances the solubility and removal of those contaminants (De Cássia et al., 2014). It has also been demonstrated that the addition of biosurfactants into the soil may improve the bioremediation rates and they are promising due to their biodegradability, low toxicity (Mulligan, 2005). The first part of my thesis focuses on the physical chemical characterization of rhamnolipids through techniques such as dynamic light scattering and X-ray diffraction. Subsequently we have conducted toxicity tests through interaction with model membrane systems by testing different surfactant concentrations. We have initially used a class of liposomes: GUVs, giant unilamellar vesicles, prepared by varying their lipid composition and by the electroforming method. Then we have used the erythrocytes and analyzed the effect by spectrophotometric analysis and by an optical microscope evaluating their lysis and their morphological change. Finally we have analyzed their toxicity on HaCat cells, spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (Boukamp et al., 1988). The final part of my thesis project focuses on the analysis of the structure assumed by single rhamnolipid molecules in diluted conditions. The tests were carried out on pure water and on water with precise salt concentrations in order to get closer and closer to the model of brackish water. To evaluate the effect of this biosurfactant on the hydrocarbons, different concentrations of oil (kirkuk oil) have also been added. This last part of the research was carried out using the SAXS (Small-Angle X-ray Scattering) technique in various European and extra-European synchrotrons (ELETTRA, Trieste; ESRF, Grenoble; LNLS, Campinas, Brazil) obtaining information on the structural parameters, stability, counter-ion effects and interactions between the different molecules of rhamnolipids in different conditions. Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes, characteristic distances of partially ordered materials, and much more. This is achieved by analyzing the elastic scattering behaviour of X-rays when travelling through the material, recording their scattering at small angles (typically 0.1 - 10°, hence the "Small-angle" in its name). It belongs to the family of small-angle scattering (SAS) techniques along with small-angle neutron scattering, and is typically done using hard X-rays with a wavelength of 0.07 - 0.2 nm.
Questa tesi riporta lo studio di una particolare classe di tensioattivi naturali, i ramnolipidi, da utilizzare nei processi di biorisanamento, in particolare nell'industria petrolifera. Il caso di studio di questa tesi deriva da un problema molto importante e frequente negli ultimi decenni, vale a dire l'inquinamento ambientale di acqua e suolo da parte di idrocarburi, prodotti petrolchimici e loro derivati. I ramnolipidi sono una classe di glicolipidi prodotti da Pseudomonas aeruginosa (Desai e Banat, 1997). Hanno iniziato a diventare rilevanti per il biorisanamento, una tecnica di gestione dei rifiuti che prevede l'uso di organismi per neutralizzare le sostanze inquinanti da un sito contaminato. La bassa solubilità e l'adsorbimento sono due proprietà principali degli idrocarburi ad alto peso molecolare, che ne limitano la disponibilità ai microrganismi. Per questo motivo, l'aggiunta di tensioattivi aumenta la solubilità e la rimozione di tali contaminanti (De Cássia et al., 2014). È stato inoltre dimostrato che l'aggiunta di biotensioattivi nel terreno può migliorare i tassi di biorisanamento e sono promettenti a causa della loro biodegradabilità e bassa tossicità (Mulligan, 2005). La prima parte della mia tesi si concentra sulla caratterizzazione chimica e fisica dei ramnolipidi attraverso tecniche come la diffusione dinamica della luce e la diffrazione dei raggi X. Successivamente abbiamo condotto test di tossicità attraverso l'interazione con i sistemi di membrana modello testando diverse concentrazioni di tensioattivo. Inizialmente abbiamo utilizzato una classe di liposomi: GUV, vescicole giganti unilamellari, preparate variando la loro composizione lipidica e il metodo di elettroformazione. Quindi abbiamo usato gli eritrociti e analizzato l'effetto mediante analisi spettrofotometrica e con un microscopio ottico per valutare la loro lisi e il loro cambiamento morfologico. Infine abbiamo analizzato la loro tossicità sulle cellule di HaCat, spontaneamente trasformate la linea di cellule di cheratinociti immortali aneuploidi dalla pelle umana adulta (Boukamp et al., 1988). La parte finale del mio progetto di tesi si concentra sull'analisi della struttura assunta da singole molecole di ramnolipidi in condizioni diluite. I test sono stati condotti su acqua pura e acqua con precise concentrazioni di sale per avvicinarsi sempre di più al modello di acqua salmastra. Per valutare l'effetto di questo biotensioattivo sugli idrocarburi, sono state aggiunte anche diverse concentrazioni di olio (olio di kirkuk). Quest'ultima parte della ricerca è stata condotta utilizzando la tecnica SAXS (Small-Angle Scattering a raggi X) in vari sincrotroni europei ed extraeuropei (ELETTRA, Trieste, ESRF, Grenoble, LNLS, Campinas, Brasile) ottenendo informazioni sulla struttura, sulla stabilità, effetti contro-ioni e interazioni tra le diverse molecole di ramnolipidi in diverse condizioni. Lo scattering a raggi X di piccolo angolo (SAXS) è una tecnica di scattering a piccolo angolo grazie alla quale è possibile quantificare le differenze di densità su scala nanometrica in un campione. Ciò significa che può determinare le distribuzioni delle dimensioni delle nanoparticelle, risolvere le dimensioni e la forma delle macromolecole (monodisperse), determinare le dimensioni dei pori, le distanze caratteristiche dei materiali parzialmente ordinati e molto altro. Ciò si ottiene analizzando il comportamento di scattering elastico dei raggi X quando si viaggia attraverso il materiale, registrando la loro dispersione a piccoli angoli (tipicamente 0,1 - 10 °, da cui il "piccolo angolo" nel suo nome). Appartiene alla famiglia delle tecniche di scattering a piccolo angolo (SAS) insieme alla dispersione di neutroni a piccolo angolo, ed è tipicamente fatto usando raggi X duri con una lunghezza d'onda di 0,07 - 0,2 nm.
Biophysical and Toxicological Properties of Rhamnolipids as Potential Agents in Bioremediation Processes
COME, BENEDETTA
2019
Abstract
This thesis reports the study of a particular class of natural surfactants, the Rhamnolipids , to be used in bioremediation processes, especially in the petroleum industry. The case study of this thesis stems from a very important and frequent problem in the last decades, namely the environmental pollution of water and soils by hydrocarbons, petrochemical products and their derivatives. Rhamnolipids are a class of glycolipids produced by Pseudomonas aeruginosa (Desai & Banat, 1997a). They have been starting to became relevant for bioremediation, a waste management technique that involves the use of organisms to neutralize pollutants from a contaminated site. The low solubility and adsorption are two major properties of high molecular weight hydrocarbons, which limit their availability to microorganisms. For this reason, the addition of surfactants enhances the solubility and removal of those contaminants (De Cássia et al., 2014). It has also been demonstrated that the addition of biosurfactants into the soil may improve the bioremediation rates and they are promising due to their biodegradability, low toxicity (Mulligan, 2005). The first part of my thesis focuses on the physical chemical characterization of rhamnolipids through techniques such as dynamic light scattering and X-ray diffraction. Subsequently we have conducted toxicity tests through interaction with model membrane systems by testing different surfactant concentrations. We have initially used a class of liposomes: GUVs, giant unilamellar vesicles, prepared by varying their lipid composition and by the electroforming method. Then we have used the erythrocytes and analyzed the effect by spectrophotometric analysis and by an optical microscope evaluating their lysis and their morphological change. Finally we have analyzed their toxicity on HaCat cells, spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (Boukamp et al., 1988). The final part of my thesis project focuses on the analysis of the structure assumed by single rhamnolipid molecules in diluted conditions. The tests were carried out on pure water and on water with precise salt concentrations in order to get closer and closer to the model of brackish water. To evaluate the effect of this biosurfactant on the hydrocarbons, different concentrations of oil (kirkuk oil) have also been added. This last part of the research was carried out using the SAXS (Small-Angle X-ray Scattering) technique in various European and extra-European synchrotrons (ELETTRA, Trieste; ESRF, Grenoble; LNLS, Campinas, Brazil) obtaining information on the structural parameters, stability, counter-ion effects and interactions between the different molecules of rhamnolipids in different conditions. Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes, characteristic distances of partially ordered materials, and much more. This is achieved by analyzing the elastic scattering behaviour of X-rays when travelling through the material, recording their scattering at small angles (typically 0.1 - 10°, hence the "Small-angle" in its name). It belongs to the family of small-angle scattering (SAS) techniques along with small-angle neutron scattering, and is typically done using hard X-rays with a wavelength of 0.07 - 0.2 nm.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Come.pdf
accesso aperto
Dimensione
23.23 MB
Formato
Adobe PDF
|
23.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/96681
URN:NBN:IT:UNIVPM-96681