Aim of bioengineering is to investigate phenomena of life sciences. Considering that statistic is an excellent tool for modeling, analyzing, characterizing and interpreting phenomena, aim of this doctoral thesis is to merge the major biostatistical techniques and the bioengineering processing of cardiac signals. The importance of statistics in cardiac bioengineering can be deeply understand through its application; thus, four real applications were presented. The first is the Adaptive Thresholding Identification Algorithm (AThrIA), born to identify/characterize electrocardiographic P waves. AThrIA is the perfect example of how much statistical preprocessing can be important in cardiac clinical practice. The second application is CTG Analyzer, an interface that automatically extracts cardiotocographic clinical features. About CTG Analyzer feature extraction, biostatistics is a fundamental instrument to evaluate its correctness. The third application is eCTG, a software to digitalize cardiotocographic signals from images, using a statistical pixel clustering procedure. Combining distributions analysis and classification, eCTG is an important example of statistics in image/signal processing. Finally, the fourth application is the creation of deep-learning serial ECG classifiers, specific neural networks to detect cardiac emerging pathology. Based on serial electrocardiography, these new and innovative classifiers represent samples of the real importance of classification in supporting clinical diagnosis. In conclusion, this doctoral thesis underlines the importance of statistic in bioengineering of cardiac signals. Considering the results and their clinical meaning, the combination of cardiac bioengineering and statistics is a valid instrument to support the scientific research. Linked by the same aim, they are able to quantitative/qualitative characterize the phenomena of life sciences, becoming a single science, biostatistics.
L’obiettivo della bioingegneria è lo studio dei fenomeni delle scienze della vita. La statistica è un eccellente strumento per la modellazione, l’analisi, la caratterizzazione e l’interpretazione di questi fenomeni. Scopo di questa tesi di dottorato è quello di combinare le principali tecniche statistiche con l'elaborazione dei segnali cardiaci. L'importanza delle statistiche nella bioingegneria cardiaca può essere compresa attraverso la loro applicazione; quindi, sono state presentate quattro applicazioni reali. La prima applicazione è l'Adaptive Thresholding Identification Algorithm (AThrIA), nato per identificare le onde P elettrocardiografiche. AThrIA è l'esempio perfetto di quanto la preelaborazione statistica possa essere importante nella pratica clinica cardiaca. La seconda applicazione è CTG Analyzer, un'interfaccia che estrae automaticamente le caratteristiche cliniche cardiotocografiche. In tal caso, la statistica diventa lo strumento per valutarne la correttezza delle caratteristiche estratte. La terza applicazione è eCTG, un software per digitalizzare i segnali cardiotocografici. Combinando l’analisi delle distribuzioni e le tecniche di classificazione, eCTG è un importante esempio dell’utilizzo della statistica nell'elaborazione di immagini e segnali. Infine, la quarta applicazione è la creazione di classificatori per l’elettrocardiografia seriale basati su deep learning. Questi nuovi e innovativi classificatori rappresentano un esempio di come la classificazione statistica supporta la diagnosi clinica. In conclusione, questa tesi di dottorato sottolinea l'importanza della statistica nella bioingegneria dei segnali cardiaci. Considerando i risultati e il loro significato clinico, la combinazione di bioingegneria cardiaca e statistica è uno strumento valido per supportare la ricerca scientifica. Legati allo stesso scopo, tali scienze sono in grado di caratterizzare i fenomeni delle scienze della vita, diventando una scienza unica, la biostatistica.
Biostatistics of Cardiac Signals: Theory & Applications
SBROLLINI, AGNESE
2019
Abstract
Aim of bioengineering is to investigate phenomena of life sciences. Considering that statistic is an excellent tool for modeling, analyzing, characterizing and interpreting phenomena, aim of this doctoral thesis is to merge the major biostatistical techniques and the bioengineering processing of cardiac signals. The importance of statistics in cardiac bioengineering can be deeply understand through its application; thus, four real applications were presented. The first is the Adaptive Thresholding Identification Algorithm (AThrIA), born to identify/characterize electrocardiographic P waves. AThrIA is the perfect example of how much statistical preprocessing can be important in cardiac clinical practice. The second application is CTG Analyzer, an interface that automatically extracts cardiotocographic clinical features. About CTG Analyzer feature extraction, biostatistics is a fundamental instrument to evaluate its correctness. The third application is eCTG, a software to digitalize cardiotocographic signals from images, using a statistical pixel clustering procedure. Combining distributions analysis and classification, eCTG is an important example of statistics in image/signal processing. Finally, the fourth application is the creation of deep-learning serial ECG classifiers, specific neural networks to detect cardiac emerging pathology. Based on serial electrocardiography, these new and innovative classifiers represent samples of the real importance of classification in supporting clinical diagnosis. In conclusion, this doctoral thesis underlines the importance of statistic in bioengineering of cardiac signals. Considering the results and their clinical meaning, the combination of cardiac bioengineering and statistics is a valid instrument to support the scientific research. Linked by the same aim, they are able to quantitative/qualitative characterize the phenomena of life sciences, becoming a single science, biostatistics.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Sbrollini.pdf
Open Access dal 01/10/2020
Dimensione
7.81 MB
Formato
Adobe PDF
|
7.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/96752
URN:NBN:IT:UNIVPM-96752