Nicotinate phosphoribosyltransferase (NaPRT) catalyzes the conversion of nicotinate (Na) to Na mononucleotide (NaMN), the first reaction of the Preiss-Handler pathway for the biosynthesis of nicotinamide adenine dinucleotide (NAD). The importance of NaPRT in NAD metabolism is demonstrated by the fact that, in human embryonic kidney cells, the addition of Na considerably increases NAD levels, which do not show feedback inhibition effect on the enzyme (1). Here we describe the enzymatic characterization of human NaPRT. The protein was expressed in E. coli BL21(DE3) cells and purified to homogeneity by Ni-NTA resin affinity chromatography. The principal kinetic parameters of human NaPRT were determined. It was found that the enzyme followed a Michaelis-Menten kinetic with a random bireactant mechanism, and the Km for Na and PRPP were 44 μM and 22 μM, respectively. The Vmax was attested to be 0.013 U/mg, although in presence of Pi this value increased to 0.3 U/mg. Interestingly, ATP had a stimulation effect on enzymatic activity only at low substrates concentration, whereas at higher substrates concentration (1 mM), it showed an inhibitory effect. In addition to the kinetic characterization, the effect of several metabolites on NaPRT activity was investigated. As expected, NAD and NaAD, in addition to NMN and NaMN, had no effect on the enzyme activity, whereas piruvate and dihydroxyacetone phosphate showed a stimulation effect. On the contrary, several metabolites involved in the glucose or fatty acid metabolism significantly inhibited the enzyme, leading to hypothesize an in vivo NaPRT-depending regulation of NAD synthesis by these compounds. In addition, site-directed mutagenesis experiments were performed to elucidate the role of highly conserved residues. We determined that mutations, which involved residues localized in the / barrel domain of the protein, sensibly lowered the activity of the enzyme with respect of the wild-type protein. Human NaPRT was co-crystallized in presence of the potent enzyme inhibitor Acetyl-CoA using PEG 4000 as the major precipitant. The resulting crystals showed diffraction up to 3.0 Å resolution using synchrotron radiation at the ESRF, Grenoble France and are currently being optimised to undertake crystal structure determination. Finally, the 3D structure of the enzyme was predicted by homology modeling and used to carry out molecular docking simulations in order to identify the residues involved in the recognition and stabilization of ligands
L’enzima nicotinato fosforibosiltranferasi (NaPRT), coinvolto nella prima reazione della via di Preiss-Handler per la biosintesi della nicotinammide adenindinucleotide (NAD), catalizza la conversione del nicotinato (Na) in Na mononucleotide (NaMN). L’importanza della NaPRT nel metabolismo del NAD è dimostrato dal fatto che, nelle cellule renali embrionali umane, l’aggiunta di Na aumenta sensibilmente il livello intracellulare di NAD, che non mostra un’inibizione a feedback nei confronti dell’enzima (1). Viene qui descritta la caratterizzazione enzimatica della NaPRT umana. La proteina è stata espressa nelle cellule BL21 (DE3) di Escherichia coli e purificata in omogeneità con cromatografia di affinità tramite resina Ni-NTA. Sono stati successivamente determinati i principali parametri cinetici della NaPRT. L’enzima segue una cinetica del tipo Michaelis-Menten con un meccanismo di reazione random. Inoltre, la Km del Na e il PRPP è risultata essere di 44 e 22 M, rispettivamente e la Vmax ha un valore di 0,012 U/mg, anche se in presenza di Pi aumenta fino a 0,3 U/mg. L’ATP sembra svolgere un duplice effetto sull’enzima: a basse concentrazioni di substrato (fino a 80 M) ha un effetto di stimolazione dell’attività, mentre a concentrazioni saturanti dei substrati (1 mM) il nucleotide funge da inibitore. Oltre alla caratterizzazione cinetica, è stato investigato l’effetto di vari metaboliti sull’attività della NaPRT. Come atteso, NAD e NaAD, insieme a NMN e NaMN, non hanno effetto sull’enzima, mentre il piruvato e il diidrossiacetonfosfato producono un effetto stimolatorio. Al contrario, numerosi metaboliti coinvolti nel metabolismo del glucosio e degli acidi grassi inibiscono l’enzima, facendo ipotizzare una regolazione in vivo della sintesi del NAD dipendente dalla NaPRT da parte di questi composti. Inoltre, per meglio comprendere il ruolo di residui altamente conservati all’interno della struttura primaria della proteina, sono stati effettuati studi di mutagenesi sito-diretta. Si è determinato che, le mutazioni che hanno coinvolto i residui situati nel dominio / barrel dell’enzima, diminuiscono fortemente l’attività enzimatica, se confrontata con i valori della proteina wild-type. La NaPRT umana è stata inoltre co-cristallizzata in presenza dell’inibitore enzimatico Acetil-CoA, usando come principale precipitante PEG 4000. I cristalli ottenuti utilizzando radiazioni al sincrotrone all’ ESRF (Grenoble, Francia) mostrano diffrazione con una risoluzione maggiore di 3.0 Å e sono in corso studi di ottimizzazione per ottenere cristalli utili per la determinazione cristallografica. In attesa dell’ottenimento della struttura cristallografica, è stata predetta la struttura 3D dell’enzima attraverso l’homology modeling ed il modello ottenuto è stato utilizzato per condurre simulazioni di docking molecolare al fine di identificare i residui coinvolti nel riconoscimento e nella stabilizzazione dei ligandi.
Regolazione del metabolismo del NAD nell'uomo: caratterizzazione cinetica, funzionale, regolatoria e strutturale della nicotinato fosforibosiltrsferasi (NaPRT)
GALASSI, LUCIA
2011
Abstract
Nicotinate phosphoribosyltransferase (NaPRT) catalyzes the conversion of nicotinate (Na) to Na mononucleotide (NaMN), the first reaction of the Preiss-Handler pathway for the biosynthesis of nicotinamide adenine dinucleotide (NAD). The importance of NaPRT in NAD metabolism is demonstrated by the fact that, in human embryonic kidney cells, the addition of Na considerably increases NAD levels, which do not show feedback inhibition effect on the enzyme (1). Here we describe the enzymatic characterization of human NaPRT. The protein was expressed in E. coli BL21(DE3) cells and purified to homogeneity by Ni-NTA resin affinity chromatography. The principal kinetic parameters of human NaPRT were determined. It was found that the enzyme followed a Michaelis-Menten kinetic with a random bireactant mechanism, and the Km for Na and PRPP were 44 μM and 22 μM, respectively. The Vmax was attested to be 0.013 U/mg, although in presence of Pi this value increased to 0.3 U/mg. Interestingly, ATP had a stimulation effect on enzymatic activity only at low substrates concentration, whereas at higher substrates concentration (1 mM), it showed an inhibitory effect. In addition to the kinetic characterization, the effect of several metabolites on NaPRT activity was investigated. As expected, NAD and NaAD, in addition to NMN and NaMN, had no effect on the enzyme activity, whereas piruvate and dihydroxyacetone phosphate showed a stimulation effect. On the contrary, several metabolites involved in the glucose or fatty acid metabolism significantly inhibited the enzyme, leading to hypothesize an in vivo NaPRT-depending regulation of NAD synthesis by these compounds. In addition, site-directed mutagenesis experiments were performed to elucidate the role of highly conserved residues. We determined that mutations, which involved residues localized in the / barrel domain of the protein, sensibly lowered the activity of the enzyme with respect of the wild-type protein. Human NaPRT was co-crystallized in presence of the potent enzyme inhibitor Acetyl-CoA using PEG 4000 as the major precipitant. The resulting crystals showed diffraction up to 3.0 Å resolution using synchrotron radiation at the ESRF, Grenoble France and are currently being optimised to undertake crystal structure determination. Finally, the 3D structure of the enzyme was predicted by homology modeling and used to carry out molecular docking simulations in order to identify the residues involved in the recognition and stabilization of ligandsFile | Dimensione | Formato | |
---|---|---|---|
Tesi.Galassi.pdf
accesso solo da BNCF e BNCR
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | |
Abs.Galassi.ITA.pdf
accesso solo da BNCF e BNCR
Dimensione
78.11 kB
Formato
Adobe PDF
|
78.11 kB | Adobe PDF | |
Abs.Galassi.ENG.pdf
accesso solo da BNCF e BNCR
Dimensione
37.66 kB
Formato
Adobe PDF
|
37.66 kB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/97260
URN:NBN:IT:UNIVPM-97260