The contamination of aquatic sediments with metals is a widespread environmental problem. The marine sediment is a sink for contaminants in the water column, so that in areas with high level of anthropization the sediment can reach very high concentrations of metal contaminants. The biological strategies for remediation of contaminates environmental matrices is gaining increasing prominence and they are often considered as a very promising approach for the potential treatment of contaminated sediments. Unlike organic pollutants, metal contaminants cannot be degraded, neither the natural processes of decomposition can remove them. As a consequence, any bioremediation strategy can be just aimed at transforming metals and semi-metals in more soluble/insoluble compounds and/or in less toxic species. This dissertation deals with the potential of prokaryotes in the mobilization/ immobilization of (semi-)metals in marine contaminated sediments, with a particular focus on the biogeochemical interactions between sediment, bacteria and (semi-) metals. The research activities have addressed the following specific questions: 1. Can the bioaugmentation with acidophilic Fe/S oxidizing bacteria (Bioleaching) be applied on marine sediments to mobilize the metal contaminants? Which factors do influence the mobilization efficiency and the real applicability on contaminated marine sediments? 2. Do the geochemical properties of the sediment affect the bio-mobilization of metals? How do the interactions among abiotic and biotic processes affect the bio-mobilization of metals from contaminated marine sediments? 3. Can the biostimulation of autochthonous microbial assemblages affect the fate of metals in marine contaminated sediments? Which are the abiotic and abiotic constrains influencing the mobility of metals during biostimulation actions? 4. Which kind of interactions among abiotic and biotic factors affect metal mobilization/immobilization in marine sediments? Can the key findings from this research be generalized in order to describe the mobilization/immobilization of metals in the marine sediment? To answer these questions, the research activities were organized in four work-packages. The first experimental campaign was aimed at testing the potential of acidophilic bacteria as bioremediation strategy for the treatment of marine sediments contaminated with metals and semi-metals. Bioaugmentation experiments were carried out with a sediment concentration higher than usually investigated in the scientific literature. The potential of Fe-reducing bacteria in favoring the acidophilic Fe/S oxidizing bacteria was investigated. Additional factors investigated were the presence/absence of different growth substrates (ferrous iron, elemental sulfur, glucose). Our results revealed that the high concentration of sediment had a negative effect on the efficiency of metal solubilization. On the contrary, the main factor that favored the mobilization of metals was the presence of iron as growth substrate. The role of Fe/S oxidizing bacteria appeared to be limited at the production and regeneration of key chemical species, responsible for metal leaching (like H+ and Fe3+). On the basis of the results obtained during the first experimentation, a second experimental campaign was designed to investigate the effect of the geochemical properties of the sediment. In order to goal this objective, we performed new bioaugmentation experiments with the same acidophilic strains on three different sediment samples, coming from different seaports. The experimental conditions were similar to those in the first set of experiments. The results of this set of experiment confirmed the indirect role of the Fe/S oxidizing bacteria and the key role of iron. Nevertheless, the results pointed out also that the mobilization efficiencies were metal specific and site-specific. Indeed, geochemical properties of the sediment (e.g., the buffering capacity) influence the biological activity of Fe/S oxidizing bacteria and the ability of metals to be stable in the solution phase. However, the kind of metal contaminants involved and the partitioning among the geochemical fractions of the sediment, were found to play an additional role in determining the final bio-mobilization efficiencies. Thus, the maintenance of acid and oxidative conditions, the chemical behavior of each metal species in aqueous environment and the geochemical characteristics of sediment interact intimately to determine the metal mobilization efficiencies. Considering the need for effective and cost-feasible bioremediation strategies, all these evidences need to be taken into account for the definition of sustainable ex-situ treatments. Dissertation outline The last set of experiments addressed the potential of the autochthonous microbial community in influencing the fate of metals in marine contaminated sediments, in connection with eventual in-situ bioremediation strategies. Biostimulation experiments were performed in anoxic conditions, with different amendants. Contrary to what is usually expected, our results pointed out that the biostimulation in anoxic conditions can lead to an increase in metal mobility and that the latter is not necessary associated to solubilization events. Indeed, the microbial community does drive the fate of metals and semi-metals, but biotic factors, like the composition of the microbial assemblages and the kind of biostimulation, produce effects that interacts with geochemical processes driven by the properties of the sediment, the kind of metal contamination and the environmental conditions. As a consequence, the interactions among all these factors are the true vector to determine the fate of metals and semi-metals in contaminated marine sediments. The main results obtained from the whole research were used to outline two conceptual models that summarize and describe the main biogeochemical interactions affecting the fate of (semi-)metals during treatments of bioaugmentation with Fe/S oxidizing bacteria and during biostimulation actions. Although they are simplistic representations of a highly complex set of processes that occur in the reality, the definition of conceptual models can improve our understanding of factors involved in this field. Indeed, a conceptual model that describes the biogeochemical interactions occurring during bioleaching was completely lacking, while the conceptual model obtained by the biostimulation experiments fills the gaps of the existing models and represents an improvement in the understanding of the processes occurring.
La contaminazione da metalli nei sedimenti di origine acquatica e` un problema ambientale di scala globale. Il sedimento marino agisce come trappola dei contaminanti presenti nella colonna d’acqua, così che i sedimenti delle zone ad elevato livello di antropizzazione possono raggiungere levate concentrazioni di contaminanti metallici. Le strategie biologiche per il recupero di matrici ambientali contaminate accrescono la loro importanza e sono considerate molto promettenti nel caso di un futuro trattamento dei sedimenti contaminati. A differenza degli inquinanti organici , i metalli (e i semimetalli) non possono essere degradati, né i processi naturali di decomposizione possono rimuoverli. Di conseguenza, qualsiasi azione di biorimedio può essere solo finalizzata alla loro trasformazione in composti più solubili/insolubili e/o in specie meno tossiche. Questa tesi riguarda il potenziale di procarioti nella mobilizzazione/immobilizzazione di (semi-)metalli in sedimenti marini contaminati, con un focus particolare sulle interazioni biogeochimiche tra sedimento, batteri e (semi-)metalli. Le attività di ricerca hanno affrontato le seguenti questioni specifiche: 1. Può la bioaugmentazione con batteri acidofili Fe/S ossidanti (biolisciviazione) essere applicata sui sedimenti marini per mobilitare i contaminanti metallici? Quali fattori influenzano l'efficienza di mobilitazione e la reale applicabilità su sedimenti marini contaminati? 2. Le proprietà geochimiche del sedimento influenzano la bio-mobilitazione di metalli? Come le interazioni fra processi abiotici e biotici influenzano la bio-mobilitazione di metalli dai sedimenti marini contaminati? 3. Può la bio-stimolazione delle associazioni microbiche autoctone influenzare il destino dei metalli nei sedimenti marini contaminati? Quali sono i vincoli biotici e abiotici che influenzano la mobilità dei metalli durante bio-stimolazione azioni? 4. Che tipo di interazioni tra fattori abiotici e biotici effetto mobilitazione metallo/immobilizzazione in sedimenti marini? Possono i principali risultati di questa ricerca di essere generalizzati al fine di descrivere la mobilitazione / immobilizzazione di metalli nel sedimento marino? Per rispondere a queste domande, le attività di ricerca sono stati organizzati in quattro pacchetti di lavoro. La prima fase sperimentale e` stata mirata a testare il potenziale dei batteri acidofili nel trattamento di sedimenti marini contaminati con metalli e semimetalli. Esperimenti di bioaugmentazione sono stati effettuati con una concentrazione maggiore di sedimenti generalmente indagato in letteratura scientifica. La capacità di batteri Fe-riducenti nel favorire i batteri acidofili Fe/S ossidanti è stato investigato. Ulteriori fattori indagati sono stati la presenza/assenza di diversi substrati di crescita (ferro ferroso, zolfo elementare, glucosio). I risultati hanno rivelato che l'alta concentrazione di sedimenti ha avuto un effetto negativo sull'efficienza di solubilizzazione metallo. Al contrario, il fattore principale che ha favorito la mobilitazione dei metalli era la presenza di ferro come substrato di crescita. Il ruolo dei batteri Fe/S ossidanti sembrava limitato alla produzione e rigenerazione di specie chimiche chiave, responsabili lisciviazione dei metalli (come H+ e Fe3+). Sulla base dei risultati ottenuti durante la prima sperimentazione, una seconda fase sperimentale è stato progettata per valutare l'effetto delle proprietà geochimiche del sedimento. Per raggiungere questo obiettivo, abbiamo effettuato nuovi esperimenti bioaugmentazione su tre diversi campioni di sedimento, provenienti da diversi porti. Le condizioni sperimentali erano simili a quelli della prima serie di esperimenti. I risultati di questa fase hanno confermato il ruolo indiretto dei batteri ossidanti Fe/S e il ruolo chiave del ferro. Tuttavia, i risultati hanno evidenziato che le efficienze di mobilitazione erano metallo-specifiche e sito-specifiche. Infatti, proprieta` geochimica del sedimento (ad esempio, la capacità tampone) influenzavano l'attività biologica di batteri Fe/S ossidanti, e la capacità di mantenere stabili i metalli in fase solubile. Abbiamo anche trovato, che il tipo di contaminanti metallici coinvolti e la ripartizione tra le frazioni geochimica dei sedimenti svolgono un ruolo aggiuntivo nel determinare le efficienza finali di biomobilizzazione. Di conseguenza, il mantenimento di condizioni acide e ossidative, il comportamento chimico in ambiente acquoso di ciascuna specie metallica e le caratteristiche geochimiche del sedimento interagiscono intimamente per determinare l'efficienza di soliubilizzazione. Considerando la necessità di strategie efficaci ed economicamente fattibile bioaugmentazione , tutte queste prove devono essere prese in considerazione per la definizione dei trattamenti ex-situ sostenibili. L' ultima serie di esperimenti ha riguardato il potenziale della comunità microbica autoctona nell'influenzare il destino dei metalli nei sedimenti marini contaminati, in Dissertation outline connessione con eventuali strategie di biorisanamento in situ. Esperimenti di biostimolazione sono stati eseguiti in condizioni anossiche, con differenti ammendanti. Contrariamente a quanto normalmente previsto, i nostri risultati hanno evidenziato che la biostimolazione in condizioni anossiche può portare ad un aumento della mobilità dei (semi-)metalli e che questa non è necessariamente associata ad eventi di solubilizzazione. Infatti, la comunità microbica puo` influenzare il destino dei metalli e semimetalli, ma fattori biotici, come la composizione delle associazioni microbiche e il tipo di biostimolazione, producono effetti che interagisce con i processi geochimici guidati dalle proprietà del sedimento, il tipo di contaminazione e dalle condizioni ambientali. Di conseguenza, le interazioni tra tutti questi fattori rappresentano il reale vettore che determina il destino dei metalli e dei semimetalli in sedimenti marini contaminati. I principali risultati ottenuti da tutta la ricerca sono stati utilizzati per delineare due modelli concettuali che riassumono e descrivono le principali interazioni biogeochimiche che riguardano il destino dei (semi-)metalli durante i trattamenti di bioaugmentazione con batteri Fe/S ossidanti e durante azioni di biostimolazione. Anche se essi sono rappresentazioni semplicistiche di un insieme molto complesso di processi che si verificano nella realtà, la definizione di modelli concettuali può migliorare la nostra comprensione dei fattori coinvolti in questo campo. Infatti, un modello concettuale che descrive le interazioni biogeochimici che avvengono durante la biolisciviazione era completamente assente, mentre il modello concettuale ottenuto dagli esperimenti di biostimolazione riempie le lacune conoscitive di modelli esistenti e rappresenta un miglioramento nella comprensione dei processi che si verificano.
Biogeochemical interactions influencing the potential of prokaryotes in the mobilization/immobilization of metals in contaminated marine sediments
FONTI, VIVIANA
2014
Abstract
The contamination of aquatic sediments with metals is a widespread environmental problem. The marine sediment is a sink for contaminants in the water column, so that in areas with high level of anthropization the sediment can reach very high concentrations of metal contaminants. The biological strategies for remediation of contaminates environmental matrices is gaining increasing prominence and they are often considered as a very promising approach for the potential treatment of contaminated sediments. Unlike organic pollutants, metal contaminants cannot be degraded, neither the natural processes of decomposition can remove them. As a consequence, any bioremediation strategy can be just aimed at transforming metals and semi-metals in more soluble/insoluble compounds and/or in less toxic species. This dissertation deals with the potential of prokaryotes in the mobilization/ immobilization of (semi-)metals in marine contaminated sediments, with a particular focus on the biogeochemical interactions between sediment, bacteria and (semi-) metals. The research activities have addressed the following specific questions: 1. Can the bioaugmentation with acidophilic Fe/S oxidizing bacteria (Bioleaching) be applied on marine sediments to mobilize the metal contaminants? Which factors do influence the mobilization efficiency and the real applicability on contaminated marine sediments? 2. Do the geochemical properties of the sediment affect the bio-mobilization of metals? How do the interactions among abiotic and biotic processes affect the bio-mobilization of metals from contaminated marine sediments? 3. Can the biostimulation of autochthonous microbial assemblages affect the fate of metals in marine contaminated sediments? Which are the abiotic and abiotic constrains influencing the mobility of metals during biostimulation actions? 4. Which kind of interactions among abiotic and biotic factors affect metal mobilization/immobilization in marine sediments? Can the key findings from this research be generalized in order to describe the mobilization/immobilization of metals in the marine sediment? To answer these questions, the research activities were organized in four work-packages. The first experimental campaign was aimed at testing the potential of acidophilic bacteria as bioremediation strategy for the treatment of marine sediments contaminated with metals and semi-metals. Bioaugmentation experiments were carried out with a sediment concentration higher than usually investigated in the scientific literature. The potential of Fe-reducing bacteria in favoring the acidophilic Fe/S oxidizing bacteria was investigated. Additional factors investigated were the presence/absence of different growth substrates (ferrous iron, elemental sulfur, glucose). Our results revealed that the high concentration of sediment had a negative effect on the efficiency of metal solubilization. On the contrary, the main factor that favored the mobilization of metals was the presence of iron as growth substrate. The role of Fe/S oxidizing bacteria appeared to be limited at the production and regeneration of key chemical species, responsible for metal leaching (like H+ and Fe3+). On the basis of the results obtained during the first experimentation, a second experimental campaign was designed to investigate the effect of the geochemical properties of the sediment. In order to goal this objective, we performed new bioaugmentation experiments with the same acidophilic strains on three different sediment samples, coming from different seaports. The experimental conditions were similar to those in the first set of experiments. The results of this set of experiment confirmed the indirect role of the Fe/S oxidizing bacteria and the key role of iron. Nevertheless, the results pointed out also that the mobilization efficiencies were metal specific and site-specific. Indeed, geochemical properties of the sediment (e.g., the buffering capacity) influence the biological activity of Fe/S oxidizing bacteria and the ability of metals to be stable in the solution phase. However, the kind of metal contaminants involved and the partitioning among the geochemical fractions of the sediment, were found to play an additional role in determining the final bio-mobilization efficiencies. Thus, the maintenance of acid and oxidative conditions, the chemical behavior of each metal species in aqueous environment and the geochemical characteristics of sediment interact intimately to determine the metal mobilization efficiencies. Considering the need for effective and cost-feasible bioremediation strategies, all these evidences need to be taken into account for the definition of sustainable ex-situ treatments. Dissertation outline The last set of experiments addressed the potential of the autochthonous microbial community in influencing the fate of metals in marine contaminated sediments, in connection with eventual in-situ bioremediation strategies. Biostimulation experiments were performed in anoxic conditions, with different amendants. Contrary to what is usually expected, our results pointed out that the biostimulation in anoxic conditions can lead to an increase in metal mobility and that the latter is not necessary associated to solubilization events. Indeed, the microbial community does drive the fate of metals and semi-metals, but biotic factors, like the composition of the microbial assemblages and the kind of biostimulation, produce effects that interacts with geochemical processes driven by the properties of the sediment, the kind of metal contamination and the environmental conditions. As a consequence, the interactions among all these factors are the true vector to determine the fate of metals and semi-metals in contaminated marine sediments. The main results obtained from the whole research were used to outline two conceptual models that summarize and describe the main biogeochemical interactions affecting the fate of (semi-)metals during treatments of bioaugmentation with Fe/S oxidizing bacteria and during biostimulation actions. Although they are simplistic representations of a highly complex set of processes that occur in the reality, the definition of conceptual models can improve our understanding of factors involved in this field. Indeed, a conceptual model that describes the biogeochemical interactions occurring during bioleaching was completely lacking, while the conceptual model obtained by the biostimulation experiments fills the gaps of the existing models and represents an improvement in the understanding of the processes occurring.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Fonti.pdf
accesso solo da BNCF e BNCR
Dimensione
5.35 MB
Formato
Adobe PDF
|
5.35 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/97378
URN:NBN:IT:UNIVPM-97378