Direct Metal Laser Sintering (DMLS), based on a layer-by-layer production process, was used to produce specimens in Co–Cr–Mo–W and Ti-6Al-4V alloys, which are utilized in biomedical applications. The mechanical response and microstructure were investigated in the as-sintered state and after post-production thermal treatments for the Co-Cr-Mo-W samples, and after two post-production treatments for the Ti-6Al-4V ones. Roughness and hardness measurements, as well as tensile and flexural tests, were performed to study the mechanical response, while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) and microanalysis (EDX) were used to investigate the microstructure in different conditions. The anisotropy of the Ti-6Al-4V specimens was also investigated. Results on the Co-Cr-Mo-W samples showed an intricate network of ε-Co (hcp) lamellae in the γ-Co (fcc) matrix, responsible of the high UTS and hardness in the as-sintered state. Thermal treatments increase volume fraction of the ε-Co (hcp) martensite but slightly modify the average size of the lamellar structure. Nevertheless, thermal treatments are capable of producing a sensible increase in UTS and hardness and a strong reduction in ductility. These latter effects were mainly attributed to the massive precipitation of an hcp Co3(Mo,W)2Si phase and the contemporary formation of Si-rich inclusions. Ti-6Al-4V specimens reveal extremely low porosity, high mechanical properties, in particular an elongation higher than the literature data. The results do not evidence any anisotropy between the different orientations. The observed microstructure is very fine. A martensitic α’-Ti phase is detected after the first stress relieving treatment, while the firing cycle induces a phase transformation to a stable α+β-Ti phase with the β phase growing at the α grains boundaries. These results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields.
La Sinterizzazione Diretta di Metalli mediante Laser (DMLS), basata su un processo strato-per-strato, è stata usata per ottenere provini in leghe Co–Cr–Mo–W e Ti-6Al-4V per applicazioni biomediche. La risposta meccanica e la microstruttura sono state studiate sia nello stato “tal quale” che dopo trattamento termico post-produzione per i campioni in Co–Cr–Mo–W, e dopo due diversi trattamenti termici per quelli in Ti-6Al-4V. Misure di rugosità e durezza, così come test di trazione e flessione, sono state eseguite per studiare la risposta meccanica, mentre la diffrazione di raggi X, la microscopia elettronica (SEM, TEM, STEM) e la microanalisi (EDX) sono state usate per investigare la microstruttura. Nella lega Ti-6Al-4V è stata studiata anche l’anisotropia. I risultati nella lega Co–Cr–Mo–W mostrano una rete di lamelle ε-Co (esagonale) nella matrice γ-Co (cubica a face centrate), responsabile della alta resistenza a trazione (UTS) e durezza nello stato “tal quale”. I trattamenti termici aumentano la frazione volumica dell’ε-Co, modificando leggermente la dimensione media della struttura lamellare. In ogni caso, i trattamenti termici danno origine ad un sensibile aumento di UTS e durezza e ad una forte riduzione della duttilità. Quest’ultima è attribuito ad una massiccia precipitazione di fase esagonale Co3(Mo,W)2Si e alla contemporanea formazione di inclusioni ricche in Si. I campioni di Ti-6Al-4V rivelano una bassa porosità ed alte proprietà meccaniche, in particolare una maggiore elongazione rispetto ai dati di letteratura. Non si evidenzia alcuna anisotropia fre le orientazioni. La microstruttura osservata è molto fine. Si rileva una fase martensitica α’-Ti dopo il primo trattamento di rilassamento degli sforzi, mentre il ciclo termico induce una fase stabile α+β-Ti, con la fase β che cresce al bordo-grano della α. Questi risultati suggeriscono possibili applicazioni innovative della tecnologia DMLS per la produzione di parti meccaniche in campo medico/odontoiatrico.
Biomedical metal alloys produced by Direct Metal Laser Sintering
GIRARDIN, Emmanuelle
2016
Abstract
Direct Metal Laser Sintering (DMLS), based on a layer-by-layer production process, was used to produce specimens in Co–Cr–Mo–W and Ti-6Al-4V alloys, which are utilized in biomedical applications. The mechanical response and microstructure were investigated in the as-sintered state and after post-production thermal treatments for the Co-Cr-Mo-W samples, and after two post-production treatments for the Ti-6Al-4V ones. Roughness and hardness measurements, as well as tensile and flexural tests, were performed to study the mechanical response, while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) and microanalysis (EDX) were used to investigate the microstructure in different conditions. The anisotropy of the Ti-6Al-4V specimens was also investigated. Results on the Co-Cr-Mo-W samples showed an intricate network of ε-Co (hcp) lamellae in the γ-Co (fcc) matrix, responsible of the high UTS and hardness in the as-sintered state. Thermal treatments increase volume fraction of the ε-Co (hcp) martensite but slightly modify the average size of the lamellar structure. Nevertheless, thermal treatments are capable of producing a sensible increase in UTS and hardness and a strong reduction in ductility. These latter effects were mainly attributed to the massive precipitation of an hcp Co3(Mo,W)2Si phase and the contemporary formation of Si-rich inclusions. Ti-6Al-4V specimens reveal extremely low porosity, high mechanical properties, in particular an elongation higher than the literature data. The results do not evidence any anisotropy between the different orientations. The observed microstructure is very fine. A martensitic α’-Ti phase is detected after the first stress relieving treatment, while the firing cycle induces a phase transformation to a stable α+β-Ti phase with the β phase growing at the α grains boundaries. These results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields.File | Dimensione | Formato | |
---|---|---|---|
Tesi GIRARDIN.pdf
accesso solo da BNCF e BNCR
Dimensione
4.07 MB
Formato
Adobe PDF
|
4.07 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/97651
URN:NBN:IT:UNIVPM-97651