and system for the detection of the temperature and the relative humidity in indoor environment as well as inside buildings materials such as ceramic tiles, plasters and paints. The activities carried out for this thesis have also been included in a European research project denominated AXIOMA, whose aim is to develop smart materials that allow to have a controlled release of biocides at precise trigger points to prevent the growth of biological organisms in the building materials. The activities related to my thesis have been used to have a precise idea of what are the temperature and relative humidity values, which are among the main factors driving the growth processes, in the studied materials. According to the current estimate about 57 percent of European houses have problems of presence of biological organism (fungi and algae) which can cause aesthetic, structural and health troubles especially for the respiration apparatus. Products containing biocide today are used to contrast the growth of biological organisms. However the release process of biocides is uncontrolled and moreover, biocides can be dangerous for people’s health and for environment, if used in high concentrations. A smart and controlled release of biocide process is only possible if the environmental conditions (temperature and relative humidity) are well know either in the indoor environment either into the materials where the biological microorganisms start to growth. Timely release at low concentrations and only if biological growth is in course is therefore aimed to contrast the birth and growth of biological organism on the surface of the materials. By using smart materials the mean life of buildings can be increased and their reconditioning largely reduced, with no harm the health of the people who live in those environments. This thesis, thanks to the studies carried out in standard indoor scenario (a house where people live) and the use of a specific measurement procedure, allows the identification of the areas where the risk of mold and fungi’s growth is higher because in these areas the temperature and relative humidity conditions reach the optimal value for the growth of biological organisms. The temperature and the relative humidity have been recorded in the rooms of the house for a period of time of two years where experience suggests that mold is most likely to be present: the bathroom and the kitchen. Such large quantity of measured data (temperature and humidity in a house under normal conditions of use) were not available in literature and have been now been used in the AXIOMA project to tune the models and the software tools under development for the preparation of optimal smart materials. A second important issue dealt with this thesis is the study of the profile of temperature and moisture inside the studied materials. The building materials analyzed are: paints, coating and tiles. It is necessary to know this profile inside the material to provide the required information necessary to develop the smart release of biocide, which is also under specific temperature and moisture conditions. For this reason two mathematical models able to obtain the temperature and the moisture values inside the analyzed materials at a particular depth, when the surface temperature or relative humidity and the hygrothermical characteristics of the materials are known. have been proposed in this thesis and experimental tests to validate their agreement with experimental data are reported.

Questa tesi PhD presenta i risultati ottenuti nello sviluppo di un sistema di misura per il rilevamento della temperatura e dell’umidità relativa in un ambiente domestico e anche in materiali edili come: pistrelle, cartongesso e vernici. Il lavoro svolto in questa tesi è inglobato nel progetto Europeo AXIOMA, il cui scopo è quello di sviluppare materiali smarts che possono rilasciare biocidi in seguito ad un preciso trigger per prevenire la crescita di organismi biologici. Le attività svolte nella mia tesi sono utilizzati per avere una precisa idea di quali debbano essere i valori di temperatura e umidità, che guidano il processo di crescita, nei materiali studiati. Momentaneamente si stima che nel 57 percento delle case in Europa hanno problemi di organismi biologici (funghi e alghe) che possono causare problemi sia strutturali che problemi di salute specialmente per l’apparato respiratorio. Oggigiorno la crescita di organismi biologici è contrastata da prodotti contenenti biocidi. Comunque il processo di rilascio dei biocidi è incontrollato e questi possono essere pericolosi per la salute della persona e dell’ambiente in particolare se viene usato ad alte concentrazioni. Un rilascio smart e controllato dei biocidi è possibile solo se le condizioni ambientali (temperatura e umidità) sono ben conosciute sia nell’ambiente interno che nei materiali dove i microrganismi biologici iniziano a crescere. Dal voler risolvere questo problema nasce lo scopo di questo progetto che ha come obbiettivo sviluppare materiali smart che possono rilasciare basse concentrazioni di biocidi per contrastare la nascita e la crescita di organismi biologici sulla superficie dei materiali. Con l’utilizzo di materiali smart, la vita media degli edifici può essere aumentata evitando pericoli di salute per le persone che vivono in questi ambienti. Questa tesi, grazie agli studi svolti in una casa normalmente abitata da persone, permette l’identificazione delle aree dove il rischio di crescita di alghe e muffe è più alta poiché in queste aree la temperatura e l’umidità relativa raggiungo i valori ottimali per la crescita di organismi biologici. La temperatura e l’umidità relativa sono state registrate nelle stanze di una casa per un periodo di due anni dove l’esperienza suggerisce una condizione ottimale per la crescita della muffa: bagno e cucina. E’ da sottolineare che i dati di temperatura e umidità relativa, registrati in una casa normalmente abitata da una famiglia, presentati in questi tesi non possono essere ritrovati in letteratura e troveranno un utilizzo nello sviluppo di un modello e di un software all’interno del progetto AXIOMA. Un ulteriore tema affrontato in questa tesi è lo studio del profilo di temperatura e di umidità all’interno dei materiali. I materiali edili studiati sono: pitture, cartongessi e piastrelle. E’ necessario conoscere il profilo nel materiale per raccogliere le informazioni necessarie per sviluppare un rilascio controllato di biocidi, attivato dal trigger dato da un preciso valore di temperatura e umidità. Per queste ragioni due modelli matematici, in grado di ottenere temperatura e umidità a particolari profondità conoscendo la temperatura e l’umidità superficiale e le caratteristiche igrotermiche dei materiali, sono proposti in questa tesi. A concludere vengono riportati anche test sperimentali per validare i dati sperimentali raccolti.

Sviluppo di una procedura di misura per la determinazione della distribuzione della temperatura e dell'umidità in ambienti domestici e in materiali edili

ERCOLI, Ilaria
2013

Abstract

and system for the detection of the temperature and the relative humidity in indoor environment as well as inside buildings materials such as ceramic tiles, plasters and paints. The activities carried out for this thesis have also been included in a European research project denominated AXIOMA, whose aim is to develop smart materials that allow to have a controlled release of biocides at precise trigger points to prevent the growth of biological organisms in the building materials. The activities related to my thesis have been used to have a precise idea of what are the temperature and relative humidity values, which are among the main factors driving the growth processes, in the studied materials. According to the current estimate about 57 percent of European houses have problems of presence of biological organism (fungi and algae) which can cause aesthetic, structural and health troubles especially for the respiration apparatus. Products containing biocide today are used to contrast the growth of biological organisms. However the release process of biocides is uncontrolled and moreover, biocides can be dangerous for people’s health and for environment, if used in high concentrations. A smart and controlled release of biocide process is only possible if the environmental conditions (temperature and relative humidity) are well know either in the indoor environment either into the materials where the biological microorganisms start to growth. Timely release at low concentrations and only if biological growth is in course is therefore aimed to contrast the birth and growth of biological organism on the surface of the materials. By using smart materials the mean life of buildings can be increased and their reconditioning largely reduced, with no harm the health of the people who live in those environments. This thesis, thanks to the studies carried out in standard indoor scenario (a house where people live) and the use of a specific measurement procedure, allows the identification of the areas where the risk of mold and fungi’s growth is higher because in these areas the temperature and relative humidity conditions reach the optimal value for the growth of biological organisms. The temperature and the relative humidity have been recorded in the rooms of the house for a period of time of two years where experience suggests that mold is most likely to be present: the bathroom and the kitchen. Such large quantity of measured data (temperature and humidity in a house under normal conditions of use) were not available in literature and have been now been used in the AXIOMA project to tune the models and the software tools under development for the preparation of optimal smart materials. A second important issue dealt with this thesis is the study of the profile of temperature and moisture inside the studied materials. The building materials analyzed are: paints, coating and tiles. It is necessary to know this profile inside the material to provide the required information necessary to develop the smart release of biocide, which is also under specific temperature and moisture conditions. For this reason two mathematical models able to obtain the temperature and the moisture values inside the analyzed materials at a particular depth, when the surface temperature or relative humidity and the hygrothermical characteristics of the materials are known. have been proposed in this thesis and experimental tests to validate their agreement with experimental data are reported.
22-feb-2013
it
Questa tesi PhD presenta i risultati ottenuti nello sviluppo di un sistema di misura per il rilevamento della temperatura e dell’umidità relativa in un ambiente domestico e anche in materiali edili come: pistrelle, cartongesso e vernici. Il lavoro svolto in questa tesi è inglobato nel progetto Europeo AXIOMA, il cui scopo è quello di sviluppare materiali smarts che possono rilasciare biocidi in seguito ad un preciso trigger per prevenire la crescita di organismi biologici. Le attività svolte nella mia tesi sono utilizzati per avere una precisa idea di quali debbano essere i valori di temperatura e umidità, che guidano il processo di crescita, nei materiali studiati. Momentaneamente si stima che nel 57 percento delle case in Europa hanno problemi di organismi biologici (funghi e alghe) che possono causare problemi sia strutturali che problemi di salute specialmente per l’apparato respiratorio. Oggigiorno la crescita di organismi biologici è contrastata da prodotti contenenti biocidi. Comunque il processo di rilascio dei biocidi è incontrollato e questi possono essere pericolosi per la salute della persona e dell’ambiente in particolare se viene usato ad alte concentrazioni. Un rilascio smart e controllato dei biocidi è possibile solo se le condizioni ambientali (temperatura e umidità) sono ben conosciute sia nell’ambiente interno che nei materiali dove i microrganismi biologici iniziano a crescere. Dal voler risolvere questo problema nasce lo scopo di questo progetto che ha come obbiettivo sviluppare materiali smart che possono rilasciare basse concentrazioni di biocidi per contrastare la nascita e la crescita di organismi biologici sulla superficie dei materiali. Con l’utilizzo di materiali smart, la vita media degli edifici può essere aumentata evitando pericoli di salute per le persone che vivono in questi ambienti. Questa tesi, grazie agli studi svolti in una casa normalmente abitata da persone, permette l’identificazione delle aree dove il rischio di crescita di alghe e muffe è più alta poiché in queste aree la temperatura e l’umidità relativa raggiungo i valori ottimali per la crescita di organismi biologici. La temperatura e l’umidità relativa sono state registrate nelle stanze di una casa per un periodo di due anni dove l’esperienza suggerisce una condizione ottimale per la crescita della muffa: bagno e cucina. E’ da sottolineare che i dati di temperatura e umidità relativa, registrati in una casa normalmente abitata da una famiglia, presentati in questi tesi non possono essere ritrovati in letteratura e troveranno un utilizzo nello sviluppo di un modello e di un software all’interno del progetto AXIOMA. Un ulteriore tema affrontato in questa tesi è lo studio del profilo di temperatura e di umidità all’interno dei materiali. I materiali edili studiati sono: pitture, cartongessi e piastrelle. E’ necessario conoscere il profilo nel materiale per raccogliere le informazioni necessarie per sviluppare un rilascio controllato di biocidi, attivato dal trigger dato da un preciso valore di temperatura e umidità. Per queste ragioni due modelli matematici, in grado di ottenere temperatura e umidità a particolari profondità conoscendo la temperatura e l’umidità superficiale e le caratteristiche igrotermiche dei materiali, sono proposti in questa tesi. A concludere vengono riportati anche test sperimentali per validare i dati sperimentali raccolti.
Smart materials
Biocide
Temperature and relative humudity
TOMASINI, Enrico Primo
Università Politecnica delle Marche
File in questo prodotto:
File Dimensione Formato  
Tesi.Ercoli.pdf

accesso solo da BNCF e BNCR

Dimensione 6.46 MB
Formato Adobe PDF
6.46 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/97872
Il codice NBN di questa tesi è URN:NBN:IT:UNIVPM-97872