The present Ph.D. thesis was focused on the development of advanced technics for ammonia synthesis with sustainable methods, i.e. electrocatalytic processes using N2, H2O and renewable energy as input sources. Implementing this technology will thus result in a breakthrough change towards a sustainable, low-carbon chemical production based on the use of renewable energy sources. There is thus a rising interest in fossil-fuel-free direct ammonia synthesis. A flow electrochemical cell was developed for ammonia synthesis directly from water and N2 at room temperature and atmospheric pressure. Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this hemi-cell. An ammonia formation rate of 2.2×10-3 gNH3·m-2·h-1 was obtained at room temperature and atmospheric pressure in a flow of N2, under an applied potential of -2.0 V vs. Ag/AgCl. This value is higher than the ammonia formation rate obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with total Faraday efficiency as high as 95.1% was obtained. Reaction condition was optimised with Fe2O3-CNT used as electrocatalyst. A 30% wt iron-oxide loading was found to be optimal. The performances greatly depend on the cell design, where the possibility of ammonia crossover through the membrane has to be inhibited. The reaction conditions also play a significant role. The effect of electrolyte (type, pH, concentration) was investigated in terms of current density, rate of ammonia formation and Faradaic efficiency in continuous tests up to 24h of time on stream. A complex effect of the applied voltage was observed. An excellent stability was found for an applied voltage of -1.0 V vs. Ag/AgCl. At higher negative applied voltages, the ammonia formation rate and Faradaic selectivity are higher, but with a change of the catalytic performances, although the current densities remain constant for at least 24h. This effect is interpreted in terms of reduction of the iron-oxide species vii above a negative voltage threshold, which enhances the side reaction of H+/e- recombination to generate H2 rather than their use to reduce activated N2 species, possibly located at the interface between iron-oxide and functionalized CNTs. Active sites for ammonia synthesis was also explored. We show here that, contrary to expectations, iron-oxide (Fe2O3) nanoparticles (supported over carbon nanotubes - CNTs) result more active in the direct electrocatalytic synthesis of ammonia from N2 and H2O than the corresponding samples after reduction to form Fe or Fe2N supported nanoparticles. A linear relationship is observed between the ammonia formation rate and the specific XPS (X-ray- photoelectron spectroscopy) oxygen signal related to O2- in Fe2O3 species, which is proofed by both chemically and electrochemically reduced samples. HRTEM (high-resolution transmission electron microscopy) data on the changes during the electrocatalytic tests confirmed that in-situ activated sites for ammonia synthesis were formed, due to the reconstruction of iron oxide particles. This opens new possibilities to understand the reaction mechanism under working conditions and design more efficient electrocatalyst for ammonia synthesis. Homogenous catalysts for ammonia synthesis was also explored. A series of ruthenium complexes were tested using the same conditions. Ru(PNP)Cl2 (PNP: 2,6-Bis[(di-tert-butylphosphanyl)methyl]pyridine) was found to be the best catalyst for ammonia synthesis among the series of analyzed complexes. This complex was also tested using different conditions, and it was found that suitable amounts of acetic acid can increase its catalytic performance. Comparing different compositions of nitrogen and hydrogen loadings, it was found that the ammonia formation rate increases with increasing nitrogen loading, from which we can deduce that activation of hydrogen was not the rate limitation step in these conditions.
Il presente lavoro di tesi è stato incentrato sullo sviluppo di tecniche avanzate per la sintesi dell'ammoniaca attraverso processi sostenibili. Per fare ciò è stato realizzato un processo elettrocatalitico che utilizza N2, H2O ed energia da fonti rinnovabili. Esiste un crescente interesse per la sintesi dell'ammoniaca diretta senza l’utilizzo di combustibili fossili. L'implementazione di questa tecnologia determinerà un cambiamento radicale verso una produzione chimica sostenibile e a basse emissioni di CO2, basata sull'utilizzo di fonti energetiche rinnovabili. Una cella elettrochimica che opera in flusso è stata sviluppata per effettuare la sintesi dell'ammoniaca direttamente dall'acqua e dall’ azoto, operante a temperatura ambiente e pressione atmosferica. Il catalizzatore utilizzato è basato su nanoparticelle di Fe supportate su nanotubi di carbonio (CNT). È stata ottenuta una velocità di formazione di ammoniaca di 2,2 × 10-3 gNH3·m2·h-1 a temperatura ambiente e pressione atmosferica in un flusso di N2, sotto l’applicazione di un voltaggio costante di -2,0 V vs Ag/AgCl. Questo valore è risultato superiore al tasso di formazione di ammoniaca ottenuto utilizzando metalli nobili (Ru / C) in condizioni di reazione comparabili. Inoltre, è stato ottenuto idrogeno con un'efficienza faraidica del 95,1%. La condizioni di reazione sono state ottimizzate per il catalizzatore a base di Fe2O3-CNT, con un carico di ossido di ferro del 30% in peso. Le prestazioni dipendono fortemente dal design della cella, in cui è necessario limitare al massimo il crossover dell'ammoniaca attraverso la membrana. Anche le condizioni di reazione hanno un ruolo significativo, l'effetto dell'elettrolita (tipo, pH, concentrazione) è stato studiato in termini di densità di corrente, velocità di formazione dell'ammoniaca ed efficienza Faradaica nei test condotti fino a 24 ore. Lo studio sulla tensione applicata è risultato complesso: è stata trovata un'eccellente stabilità per una tensione applicata di -1,0 V vs. Ag / AgCl, a tensioni più negative, la velocità di formazione dell'ammoniaca e ix l’efficienza faraidica sono più elevate, ma con un cambiamento delle prestazioni catalitiche, sebbene la densità di corrente rimanga costante per almeno 24 ore. Questo effetto è da attribuire alla riduzione delle specie di ossido di ferro al di sopra di una soglia di tensione negativa, che migliora la reazione collaterale di ricombinazione H+ / e- per generare H2 piuttosto che reagire con le specie N2 attivate, possibilmente situate all'interfaccia tra ossido di ferro e CNT funzionalizzati. Lo studio effettuato sui siti attivi mostra che, contrariamente alle aspettative, le nanoparticelle di ossido di ferro (Fe2O3) (supportate su nanotubi di carbonio - CNT) risultano più attive nella sintesi elettrocatalitica diretta di ammoniaca da N2 e H2O rispetto ai corrispondenti campioni Fe o Fe2N realizzati attraverso riduzione. Si osserva una relazione lineare tra la velocità di formazione dell'ammoniaca, e il segnale specifico dell'ossigeno all’ XPS (spettroscopia a raggi X-fotoelettronica) relativo a O2- nelle specie Fe2O3, che è comprovato da campioni sia chimicamente che elettrochimicamente ridotti. I dati HRTEM (microscopia elettronica a trasmissione ad alta risoluzione) sui cambiamenti durante i test elettrocatalitici hanno confermato che i siti attivati per la sintesi dell'ammoniaca vengono formati in situ a causa della ricostruzione di particelle di ossido di ferro. Questo apre nuove possibilità per comprendere il meccanismo di reazione in condizioni di lavoro e progettare elettrocatalizzatori più efficienti per la sintesi dell'ammoniaca. Utilizzando le stesse condizioni di reazione, sono stati anche esplorati catalizzatori omogenei per la sintesi dell'ammoniaca utilizzando una serie di complessi di Rutenio. Il catalizzatore Ru(PNT)Cl2 (PNP: 2,6-Bis[(di-tert-butylphosphanyl)methyl]pyridine) è risultato essere il miglior catalizzatore per la sintesi dell'ammoniaca in questo screening. Il catalizzatore è stato testato anche in condizioni diverse, è stato osservato che una quantità adeguata di acido acetico aumenta le sue performance catalitiche. Confrontando la diversa composizione di azoto e idrogeno, è stato riscontrato che la x formazione di ammoniaca aumenta con l'aumentare del carico di azoto, dal quale si può dedurre che l'attivazione dell'idrogeno non è il fattore limitante in queste condizioni di reazione.
Development of carbon-based catalysts for small molecule activation
CHEN, Shiming
2019
Abstract
The present Ph.D. thesis was focused on the development of advanced technics for ammonia synthesis with sustainable methods, i.e. electrocatalytic processes using N2, H2O and renewable energy as input sources. Implementing this technology will thus result in a breakthrough change towards a sustainable, low-carbon chemical production based on the use of renewable energy sources. There is thus a rising interest in fossil-fuel-free direct ammonia synthesis. A flow electrochemical cell was developed for ammonia synthesis directly from water and N2 at room temperature and atmospheric pressure. Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this hemi-cell. An ammonia formation rate of 2.2×10-3 gNH3·m-2·h-1 was obtained at room temperature and atmospheric pressure in a flow of N2, under an applied potential of -2.0 V vs. Ag/AgCl. This value is higher than the ammonia formation rate obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with total Faraday efficiency as high as 95.1% was obtained. Reaction condition was optimised with Fe2O3-CNT used as electrocatalyst. A 30% wt iron-oxide loading was found to be optimal. The performances greatly depend on the cell design, where the possibility of ammonia crossover through the membrane has to be inhibited. The reaction conditions also play a significant role. The effect of electrolyte (type, pH, concentration) was investigated in terms of current density, rate of ammonia formation and Faradaic efficiency in continuous tests up to 24h of time on stream. A complex effect of the applied voltage was observed. An excellent stability was found for an applied voltage of -1.0 V vs. Ag/AgCl. At higher negative applied voltages, the ammonia formation rate and Faradaic selectivity are higher, but with a change of the catalytic performances, although the current densities remain constant for at least 24h. This effect is interpreted in terms of reduction of the iron-oxide species vii above a negative voltage threshold, which enhances the side reaction of H+/e- recombination to generate H2 rather than their use to reduce activated N2 species, possibly located at the interface between iron-oxide and functionalized CNTs. Active sites for ammonia synthesis was also explored. We show here that, contrary to expectations, iron-oxide (Fe2O3) nanoparticles (supported over carbon nanotubes - CNTs) result more active in the direct electrocatalytic synthesis of ammonia from N2 and H2O than the corresponding samples after reduction to form Fe or Fe2N supported nanoparticles. A linear relationship is observed between the ammonia formation rate and the specific XPS (X-ray- photoelectron spectroscopy) oxygen signal related to O2- in Fe2O3 species, which is proofed by both chemically and electrochemically reduced samples. HRTEM (high-resolution transmission electron microscopy) data on the changes during the electrocatalytic tests confirmed that in-situ activated sites for ammonia synthesis were formed, due to the reconstruction of iron oxide particles. This opens new possibilities to understand the reaction mechanism under working conditions and design more efficient electrocatalyst for ammonia synthesis. Homogenous catalysts for ammonia synthesis was also explored. A series of ruthenium complexes were tested using the same conditions. Ru(PNP)Cl2 (PNP: 2,6-Bis[(di-tert-butylphosphanyl)methyl]pyridine) was found to be the best catalyst for ammonia synthesis among the series of analyzed complexes. This complex was also tested using different conditions, and it was found that suitable amounts of acetic acid can increase its catalytic performance. Comparing different compositions of nitrogen and hydrogen loadings, it was found that the ammonia formation rate increases with increasing nitrogen loading, from which we can deduce that activation of hydrogen was not the rate limitation step in these conditions.File | Dimensione | Formato | |
---|---|---|---|
Chen phd thesis 20181108.pdf
accesso aperto
Dimensione
4.4 MB
Formato
Adobe PDF
|
4.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/100510
URN:NBN:IT:UNIME-100510