Industries have become increasingly complex production entities. They involve technologies of various types, of new and old generations, with realities where machines have not replaced man and where their transversal integration is increasingly complex. Furthermore, the evolving market demands and the speed in their changes make it necessary to have production systems capable of responding promptly to new requests, making the complexity of the systems even higher. Modern advances in computer science have generated great expectations for improvement in the industrial production world. However, the distributed nature of these systems, their heterogeneity and inherent complexity make the application of these modern solutions critical. In response to industrial requirements, their heterogeneity and the rapid response to changes required, a level of abstraction capable of intelligently ``disconnecting'' physical complexity from digital complexity is therefore necessary. In this dissertation, a possible abstraction of the physical industrial world is investigated and described through Digital Twins and their interaction with modern Artificial Intelligence techniques, in order to organically represent the production context in the digital world and improve its processes, not only productive but also of global management.
Le industrie sono diventate entità produttive sempre più complesse. Coinvolgono tecnologie di vario tipo, di nuova e vecchia generazione, con realtà dove le macchine non hanno sostituito l’uomo e dove la loro integrazione trasversale è sempre più complessa. Inoltre, l’evoluzione delle richieste del mercato e la velocità nei loro cambiamenti rendono necessario dotarsi di sistemi produttivi in grado di rispondere tempestivamente alle nuove richieste, rendendo ancora più elevata la complessità degli impianti. I moderni progressi dell’informatica hanno generato grandi aspettative di miglioramento nel mondo della produzione industriale. Tuttavia, la natura distribuita di questi sistemi, la loro eterogeneità e complessità intrinseca rendono critica l’applicazione di queste soluzioni moderne. In risposta alle esigenze industriali, alla loro eterogeneità e alla rapida risposta ai cambiamenti richiesti, è quindi necessario un livello di astrazione capace di “disconnettere” in modo intelligente la complessità fisica da quella digitale. In questa tesi viene indagata e descritta una possibile astrazione del mondo fisico industriale attraverso i Digital Twins e la loro interazione con le moderne tecniche di Intelligenza Artificiale, al fine di rappresentare organicamente il contesto produttivo nel mondo digitale e migliorarne i processi, non solo produttivi ma anche della gestione globale.
Smart Digital Twins nell'Industria 4.0
MARTINELLI, MATTEO
2024
Abstract
Industries have become increasingly complex production entities. They involve technologies of various types, of new and old generations, with realities where machines have not replaced man and where their transversal integration is increasingly complex. Furthermore, the evolving market demands and the speed in their changes make it necessary to have production systems capable of responding promptly to new requests, making the complexity of the systems even higher. Modern advances in computer science have generated great expectations for improvement in the industrial production world. However, the distributed nature of these systems, their heterogeneity and inherent complexity make the application of these modern solutions critical. In response to industrial requirements, their heterogeneity and the rapid response to changes required, a level of abstraction capable of intelligently ``disconnecting'' physical complexity from digital complexity is therefore necessary. In this dissertation, a possible abstraction of the physical industrial world is investigated and described through Digital Twins and their interaction with modern Artificial Intelligence techniques, in order to organically represent the production context in the digital world and improve its processes, not only productive but also of global management.File | Dimensione | Formato | |
---|---|---|---|
[PhD Thesis] -- Smart Digital Twins in Industry 4.pdf
accesso aperto
Dimensione
4.47 MB
Formato
Adobe PDF
|
4.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/103358
URN:NBN:IT:UNIMORE-103358