L’argomento di questa tesi sono i sistemi di particelle con interazione a campo medio e i processi nonlineari ottenuti come limiti di essi. Il lavoro è suddiviso in tre parti, in cui vengono analizzati modelli caratterizzati da tre diversi meccanismi di interazione. Nella prima parte ci occupiamo di un’interazione tramite salti simultanei, che prende spunto da alcuni modelli apparsi recentemente in neuroscienze, dove gli autori trattano sistemi di neuroni in comunicazione l’uno con l’altro. Con l’obiettivo di generalizzare questo tipo di modelli consideriamo un sistema di diffusioni con salti che interagiscono tra loro attraverso la componente discontinua: ogni processo compie un salto principale con una certa frequenza e, contemporaneamente, forza tutte le altre particelle a compiere anch’esse un salto che però è detto salto collaterale, in quanto viene riscalato rispetto alla taglia del sistema. Considerando diverse ipotesi sui coefficienti, ci concentriamo sulla propagazione del caos traiettoriale e sulla dimostrazione di esistenza e unicità delle soluzioni per la corrispondente SDE nonlineare. Nella seconda parte della tesi ci occupiamo di un’interazione di tipo asimmetrico. Definiamo un sistema dove ogni particella si muove secondo una passeggiata aleatoria sui naturali, riflessa in zero e con un eventuale drift verso destra. In aggiunte c’è un’interazione asimmetrica, nel senso che ogni particella viene spinta a compiere movimenti verso sinistra sotto l’influenza solo delle particelle che si trovano alla sua sinistra. Ci chiediamo come questo sistema, che in assenza di interazione è transiente, possa diventare ergodico a seconda della forza dell’interazione e studiamo i parametri critici sia nel sistema ad N particelle che nel suo limite termodinamico. In particolare sfruttiamo risultati esistenti su diffusioni che interagiscono attraverso la funzione cumulativa empirica per evidenziare le differenze date dalla dinamica discreta. Nella terza parte ci concentri- amo su una dinamica di Langevin per il modello di Curie-Weiss generalizzato alla quale applichiamo un termine di dissipazione. Questo approccio è stato precedentemente usato per rompere la reversibilità nel modello di Curie-Weiss classico ed è stato dimostrato che, in quel caso, il sistema limite ammette una soluzione periodica. Il nostro lavoro conferma l’emergenza di comportamenti periodici anche nel caso del Curie-Weiss generalizzato. In particolare, possiamo dimostrare che un’accurata scelta della funzione di interazione nel modello di partenza è tale da dare luogo ad un sistema limite in cui coesistono molteplici soluzioni periodiche stabili.

McKean-Vlasov limits, propagation of chaos and long-time behavior of some mean field interacting particle systems

ANDREIS, LUISA
2017

Abstract

L’argomento di questa tesi sono i sistemi di particelle con interazione a campo medio e i processi nonlineari ottenuti come limiti di essi. Il lavoro è suddiviso in tre parti, in cui vengono analizzati modelli caratterizzati da tre diversi meccanismi di interazione. Nella prima parte ci occupiamo di un’interazione tramite salti simultanei, che prende spunto da alcuni modelli apparsi recentemente in neuroscienze, dove gli autori trattano sistemi di neuroni in comunicazione l’uno con l’altro. Con l’obiettivo di generalizzare questo tipo di modelli consideriamo un sistema di diffusioni con salti che interagiscono tra loro attraverso la componente discontinua: ogni processo compie un salto principale con una certa frequenza e, contemporaneamente, forza tutte le altre particelle a compiere anch’esse un salto che però è detto salto collaterale, in quanto viene riscalato rispetto alla taglia del sistema. Considerando diverse ipotesi sui coefficienti, ci concentriamo sulla propagazione del caos traiettoriale e sulla dimostrazione di esistenza e unicità delle soluzioni per la corrispondente SDE nonlineare. Nella seconda parte della tesi ci occupiamo di un’interazione di tipo asimmetrico. Definiamo un sistema dove ogni particella si muove secondo una passeggiata aleatoria sui naturali, riflessa in zero e con un eventuale drift verso destra. In aggiunte c’è un’interazione asimmetrica, nel senso che ogni particella viene spinta a compiere movimenti verso sinistra sotto l’influenza solo delle particelle che si trovano alla sua sinistra. Ci chiediamo come questo sistema, che in assenza di interazione è transiente, possa diventare ergodico a seconda della forza dell’interazione e studiamo i parametri critici sia nel sistema ad N particelle che nel suo limite termodinamico. In particolare sfruttiamo risultati esistenti su diffusioni che interagiscono attraverso la funzione cumulativa empirica per evidenziare le differenze date dalla dinamica discreta. Nella terza parte ci concentri- amo su una dinamica di Langevin per il modello di Curie-Weiss generalizzato alla quale applichiamo un termine di dissipazione. Questo approccio è stato precedentemente usato per rompere la reversibilità nel modello di Curie-Weiss classico ed è stato dimostrato che, in quel caso, il sistema limite ammette una soluzione periodica. Il nostro lavoro conferma l’emergenza di comportamenti periodici anche nel caso del Curie-Weiss generalizzato. In particolare, possiamo dimostrare che un’accurata scelta della funzione di interazione nel modello di partenza è tale da dare luogo ad un sistema limite in cui coesistono molteplici soluzioni periodiche stabili.
28-lug-2017
Inglese
mean filed models, interacting particle systems, propagation of chaos, collective periodic behavior, Hopf bifurcation, long-time behavior, ergodicity, random walks
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
Andreis_luisa_tesi.pdf

accesso aperto

Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/105329
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-105329